;
-
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY /‘Z‘é F
NORFOLK, VIRGINIA 23529

STRATEGIES FOR CONCURRENT PROCESSING OF
COMPLEX ALGORITHMS IN DATA DRIVEN ARCHITECTURES

By

John W. Stoughton, Principal Investigator
Roland R, Mielke, Co-Principal Investigator
Sukhamoy Som, Graduate Research Assistant
Rodrigc Obando, Graduate Research Assistant

Robert Tymchyshyn, Graduate Research Assistant

Progress Report
For the period May 16, 1987 to May 15, 1988

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Under

Research Grant NAG-1-683

Mr. Paul J. Hayes, Technical Monitor
ISD-Information Processing Technology Branch

Old Dominion University Research foundation

(NASR-CE~-161329) SIRATEGIES FCh CGNCURRENT N89—-114C6
EBGCESSING GF CCFELEX AIGCHITERS 1) DATA

LBEIVEM AFCHITICIUFES Frogress Repcrt, 16 May

1€€7 - 15 May 1¢¢€ (C1d Lcmiricn Upiv.) Unclas
1<€ p CSCL 09B G361 O01b0b5¢€2

o 4

June 1938

o 4@

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

STRATEGIES FOR CONCURRENT PROCESSING OF
COMPLEX ALGORITHMS IN DATA DRIVEN ARCHITECTURES

By

John W. Stoughton, Principal Investigator
Roland R. Mielke, Co-Principal Investigator
Sukhamoy Som, Graduate Research Assistant
Rodrigo Obando, Graduate Research Assistant

Robert Tymchyshyn, Graduate Research Assistant

Progress Report
For the period May 16, 1987 to May 15, 1988

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Under

Research 6rant NAG-1-683

Mr. Paul J. Hayes, Technical Monitor
1SD-Information Processing Technology Branch

Submitted by the

01d Dominion University Research Foundation
P. 0. Box 6369

Norfolk, Virginia 23508

June 19838

111

GUA L Bt 256 we Ve ure SGAOHYY

fa

-qJuswesiopua ySyN A1dwt jou s20p
pue £Tuo ssaud3a[dwod JOJ ST JUIWNDOP SIY] UT S3WBU puBdlq 3O asn ayy

WAWIVIOSIA

STRATEGIES FOR CONCURRENT PROCESSING OF COMPLEX

ALGORITHMS IN DATA DRIVEN ARCHITECTURES

By
John W. Stoughtonl, Roland R. Mielke?, Sukhamoy Som3 ,
Rodrigo Obando* and Robert Tymchyshyn®
ABSTRACT

The purpose of this report is to document research to develop stra-
tegies for concurrent processing of complex algorithms in data driven archi-
tectures. The problem domain comnsists of decision-free algorithms having
large-grained, computationally complex primitive operations. Such are often
found in signal processing and control applications. The anticipated multi-
processor environment is a data flow architecture containing between two and
twenty computing elements. Each computing element is a processor having
local program memory, and which communicates with a common global—data mem—
ory. A new graph theoretic model called ATAMM which establishes rules for
relating a decomposed algorithm to its execution in a data flow architecture
is presented. The ATAMM model is used to determine strategies to achieve
optimum time performance and to develop a system diagnostic software tool.
In addition, preliminary work on a new multiprocessor operating system based

on the ATAMM specifications is described.

1 Agsociate Professor, Department of Electrical & Computer Engineering, Old
Dominion University, Norfolk, Virginia 23529.

2 professor, Department of Electrical & Computer Engineering, Old Dominion
University, Norfolk, Virginia 23529.

3Graduate Research Assistant, Department of Electrical & Computer Engineer-
ing, Old Dominion University, Norfolk, Virginia 23529.

4 Graduate Research Assistant, Department of Electrical & Computer Engineer-
ing, Old Dominion University, Norfolk, Virginia 23529.

5 Graduate Research Assistant, Department of Electrical & Computer Engineer-
ing, Old Dominion University, Norfolk, Virginia 23529.

V' npeEDRNG-PAGE-BLANK NOTFIMED

TABLE OF CONTENTS

DISCLAIMER . 4o eesvvooerosssaassnnsassasessssseassussesanassscsesns
BBSTRACT . v eeseeessensesenassssssasssssnosssosnasssessaannanscscs
1.0 INTRODUCTION. s v v vsvverossocenssoosnosssonsesnsssscesans
I1.0 RESEARCH OVERVIEW. . vvveeecncrsnosoensvansoscncancesccnne
I1.1 Modeling and Performance........covvevveenenes
I1.2 Diagnostic Tool Development...........ceenveen
11.3 Testbed Development.....ccoeeierienenecosnnens
I11.0 OPTIMUM TIME PERFORMANCE.....cvcverenerevnenscnnenrenane
IIT.1 Introduction...cceeeseeseosssvssssnononencens
I11.2 ATAMM Model Development.......ccvevnencnnveess
[11.3 Model CharacteristiCS...c.ceerricneenocnncnses
[11.4 Performance AnalysiS....ecieseeernernccncnnes
[11.5 Strategy For Optimum Time Performance........
IV.0 DIAGNOSTIC TOOL DEVELOPMENT.....iueveenrnennncnsnsrnncnanes
i IV.1 Analyzer Development........oevveeerveencncns
IV.1.1 Introduction....eeveeveecsnannanecnes

IV.1.2 Prototype and its Communication
EVENES . eereeeoesorassacsssanssonnsas
Iv.1.3 Graph Manager Diagnostic Routines....

IV.1.4 Sequential Account for Concurrent

ProcesSiNg..veeesesuecasanscsssansnns
IV.1.5 Analyzer Program......ccesecseosssscs
IV.1.6 Measurement of TBIO, TBO, TBI........
IV.1.7 Concurrency Measurement..........co0s
IV.1.8 General StatisticS....ceevieevecacans
IV.1.9 Graph Simulation/Analyzer............

IV.1.10 Output of the Graph Simulation/
ANAlYZE i iveuvuornsacssssonosasnsens
V.0 EXPERIMENTAL RESULTS..ieuviennecrnnronsronnssnocssocaranacne
V.1 INEroductioN..veeeeressssceasosssassosononsns
V.2 Graphs with Parallel Paths.......cecveennenns
V.2.1 Simulation.....ceeeeeecocecesssnsnceses
V.2.2 Analysis of Output Data...............

V.2.3 Minimun Number of Resources for
Maximum PerformanCe.....ceeceearcences
V.2.4 Graphs with Interative LoopS..........
V.2.5 Simulation...eeeeeccsoccrosoecsconcens
V.2.6 Analysis of Output Data...............

v

TABLE OF CONTENTS (Continued)

V.3 Performance FACLOrS...uiereeeesosossnroannens
VI.0 FURTHER RESEARCH...vvervvrrenanssernnsonenoassnsennnenaannss
VII.0 REFERENCES ..t vvveureonnsonaoessossosssonneansesconssonscns
TABLE S . s e v oveeenvoaseeossssanossssansosssasosssassssosssssssncses
FIGURE S . o v vveevsoesnossossssasssssnsssossanssanssssvsosssassanses

APPENDIX A: National Aerospace and Electronics
Conference Paper....ccieesssecssssssssonsoannsensasos

APPENDIX B: Distributed Computing Systems Conference

LIST OF TABLES

Table

1 Results from first experiment, first priority assignment....

2 Results from the first experiment, second priority
ASSTGAMENT L vt evevrrersosenonsoassonnnecsosseannoroneneueses

3 Results from first experiment, third priority assignment....
4 Results from second experiment, first priority assignment...

5 Results from second experiment, second priority

ASSTGNMENt e uvvrrirnnenceseessanenttosssosssannnnunenseens
6 Peformance factors for graph of Section O
7 Performance factors for graph of Section 4.2........cccv0nen
LIST OF FIGURES
Figure
1 Algorithm marked graph for discrete system equation.........
2 ATAMM node marked graph model......ccveiiecincnnecennenncees

3 ATAMM computational marked graph model for discrete
System equatioN. . vveereerinnreeerenieentateonnraeresnneecs

vi

A-1

B-1

Page
62

62
63
64

64
65
65

TABLE OF CONTENTS (Continued)
LIST OF FIGURES (Continued)

4 ATAMM model COmMPONENtS...veeiesrerrevecasoossoosssoasonnsans 70
5 Modified algorithm graph for Figure l........ccviiivnnnnenn, 71
6 Operating strategy implementation.........cvovivvinniennnn, 72
7 Algorithm graph for design example.......coeeiinieininnnnneen 73
8 Computational marked graph for design example............... 74
9 Graph play with TB0=3 and unlimited functional units........ 75
10 Resource utilization envelope for design example............ 76
11 Graph play with TBO=4 and no control edges..........ccocenen 77
12 Resource envelope overlay diagram with TBO=3.......... .00t 78
13 Resource envelope overlay diagram with TB0=3.5.............. 79
14 Resource envelope overlay diagram with TB0=4.0.............. 80
15 Example algorithm graph performance analysis summary........ 81
16 Performance margin for example algorithm............covvvenen 82
17 Prototype block diagram.....cceiveeiennnsrecnnnerrveranennnns 83
18 Prototype communications dialog.....cevevueieennineennenneanes 84
19 A sample FIPSO fileuuiiiienserrerrneneosasocsosnsscsnoonaanss 85
20 Analyzer information flow.......oieviiinnenrennieeiencnnanees 86
21 Analyzer node activity display...coceiveeninincrencnncnnene 87
22 Analyzer functional unit display....coovviiennnineeennainanns 88
23 Analyzer input/output display.....ceveeeeiiiiccnranennnenns 89
24 Analyzer concurrency display....ceeeeeireccoennttnncencsances 90
25 Graph simulation/analyzer information flow................. 91
26 Graph with parallel paths......o.eiiiiiiienieenneeneansenses 92
27 CMG using single node model......ccvvnvirirrnennsencanncansns 93

vii

TABLE OF CONTENTS (Concluded)
LIST OF FIGURES (Concluded)

Figure
28 Circuit to obtain TBO geeeeesoorvnsrmrnenrnenreneneereornces
29 Path to obtain TBIO| geseerraereernenrunrornenrnennseceennes
30 Graph description and simulation control file used for

the first experiment....ceceeeeeerearreerneeasceeenonnenenes
31 Graph with iterative T00PS.....cevernenrnenreonnenerornenerns
32 CMG of the graph in Figure 31 using single node model.......
33 Graph description file for the second experiment............

viii

96
98
99
100

1.0 INTRODUCTION

The purpose of this report is to document research to develop strate-
gies for concurrent processing of complex algorithms in data driven archi-
tectures. The problem domain consists of decision-free algorithms having
large-grained, computationally complex primitive operatious. The antici-
pated multiprocessor environment is assumed to contain between two and
twenty computing elements for concurrent execution of the various primitive
operations. Each computing element or functional unit is a processor having
local memory for program storage and temporary input and output data con-
tainers. The functional units have a common global data memory, and func-
tional unit activity is coordinated by a graph manager. The global memory
and graph manager may be either centralized or distributed. The authors
have proposed a new graph theoretic model to provide a basis for establish-
ing rules for relating a decomposed algorithm to its execution in a data
flow environment. The model is identified by the acronym ATAMM which repre-
sents Algorithm To Architecture Mapping Model. The availability of the
ATAMM model ils important because it provides a context in which to investi-
gate algorithm decomposition strategies, it provides a basis for predicting
and improving time performance, and it identifies the data flow and control
flow required of any data flow architecture which implements the algorithm.

During an earlier grant period, May 16, 1986 to May 15, 1987, the au-
thors formulated the ATAMM model for representing the implementation of a
decomposed algorithm in a data flow architecture. In addition, a simulation
tool was developed to display data flow and control flow for algorithms
operating according to the ATAMM rules. During the present grant period,
May 16, 1987 to May 15, 1988, the ATAMM model was used to determine analyti-

cally performance bounds for task computational time and system throughput

time. An operating strategy which achieves optimum time performance was
developed. In addition, a new diagnostic software tool was developed for
use with the simulation tool. The diagnostic tool monitors detailed system
operation and displays global system performance indicators and measures.
Also, a new multiprocessor operating system based on the ATAMM specifica-
tions is being constructed to validate the ATAMM rules and to provide a
testbed for further experimentation. It is the purpose of this report to a
detailed description of the research performed during the present grant
period.

In Section II, a overview of research performed during the period May
16, 1987 to May 15, 1988 is presented. This overview consists of summaries
of work to develop strategies for optimum time performance, diagnostic soft-
ware tools, and a testbed operating system. In Section I1I, the development
of strategies for optimum time performance is described. The new diaganos-
tic software tools are explained and illustrated in Section IV. Recommenda-
tions for continuing and future research are briefly outlined in Sectiomn V.
Two papers describing recent research efforts are included as

appendices.

II. RESEARCH OVERVIEW
In this section, a summary of research activity conducted during the
period May 16, 1987 through May 15, 1988 is presented. A more detailed
description of this work, as well as illustrative examples, is given in the

following sections and the appendices.

II1.1 Modeling and Performance

The development of a new graph theoretic model for describing data and
control flow associated with the execution of large-grained algorithms in a
special distributed computing environment is presented. The model is iden-
tified by the acronym ATAMM which represents Algorithm To Architecture
Mapping Model. The purpose of such a model is to provide a basis for
establishing rules for relating an algorithm to its execution in a multi-
processor environment. Specifications derived from the model lead directly
to the description of a data flow architecture. The availability of the
ATAMM model is important for at least three reasous. First, it provides a
context in which to investigate algorithm decomposition strategies without
the need to specify a specific computer architecture. Second, the model
identifies the data flow and control dialog required of any data flow archi-
tecture which implements the algorithm. Third, the model provides a basis
for calculating analytically performance bounds for computing speed and
throughout capacity.

The problem domain of the ATAMM model consists of decision free algo-
rithms with computationally complex primitive operations which are assumed
to be implemented in a dedicated data flow environment. The algorithms are
such as may be found in (but not limited to) large scale signal processing

and control applications. The anticipated multiprocessor environment is

assumed to consiste of two to twenty processing elements for concurrent
execution of the various algorithm primitives.

The development of new computer architectures based upon distributed,
multiprocessor organizations [1], [2] is motivated mainly by the requirement
for increased speed and greater throughput capability in complex signal
processing applications [3]. Recent advances in the production of high-
density microelectronics [4] has made possible the construction of parallel
architectures consisting of identical, special purpose computing elements
[5]. A number of models for describing the behavior of algorithms in this
setting have been developed [6] - [8]. However, these models represent only
the data flow and do not adequately display the complex issues of communi-
cation and control flow which must occur in any realization of the model.
For this reason, it has been difficult to investigate how to effectively
match the decomposition and scheduling of algorithms to the structure and
control of parallel architectures. The importance of better understanding
the relationship between algorithms and architectures is only now becoming
recognized [9].

A new model useful for understanding the relationship between decom-
posed algorithms and data flow architectures has been presented. Named
ATAMM for Algorithm To Architecture Mapping Model, the model consists of
Petri net marked graphs called the algorithm marked graph, the node marked
graph, and the computational marked graph. After establishing that the
computational marked graph is live, safe and consistent, graph time perform-
ance measures of time between input and output (TBIO), task time (TT), and
time between outputs (TBQO) are defined. Then lower bounds for the

performance measures are calculated analytically from the modified algorithm

graph and the computational marked graph. A desighn strategy for achieving

optimum time performance is proposed and illustrated with a design example.

11.2 Diagnostic Tool Development

Although the ATAMM model is not complicated in principle, the execution
of a system modelled with it becomes hardly tractable when both the number
of nodes as the number of resources increase. Therefore, it is necessary to
have Diagnostic Tools to explore the execution of a given algorithm. One of
the important parameters\necessary to observe is concurrency. Concurrency
is a measure of the number of resources that work at the same time for a
specified length of execution of an algorithm. Other parameters include
TBIO (Time Between Input and Output), TBO (Time Between Outputs), and TBI
(Time Between Inputs). These parameters refere to the time performance of
the system: the elapsed time between when input data is read and its
corresponding output data is written (TBIO), the time elapsed between
repetitive output writings (TBO), and the time elapsed between repetitive
inputs data readings (TBI). Another necessary measurements are the time the
system takes and the different states it goes through to reach steady
state.

The Analyzer, a computer program, provides measurement of the items
denoted above. The input to the program is a file containing a sequential
account of the execution of a concurrent system. It displays the activity
of the individual nodes of a graph. This display is drawn on a common time
axis for easy reading of the concurrent execution of nodes. An alternate
display is the plotting of the activity of the resources versus time. The
program also displays the function of concurrency versus time which is now
called Total Resource Utilization Envelope. For individual data packets,

the program displays the values of TBIO, TBO and TBI. It also reports

general statistics of the transitions per node. This program is primarily
to be used for post-execution detailed analysis of the execution of an
algorithm.

Another computer program, the Graph Simulation/Analyzer, provides not
only simulation of the execution of an algorithm but also analysis of data
immediately after execution. It generates the sequential files containing
firing of transitions in the CMG (Computational Marked Graph) to be analyzed
by the Analyzer, the program described above. It also generates files with
average values of TBO, TBI and TBIO. The simulation module has been
improved so that it may include random variables as the values of the tran-
sitions in the CMG. It accepts as input an ASCII file containing a descrip-
tion of the topology of a graph, transition time assignments, priority

assignment, initial marking, number of resources, etc.

II.3 Testbed Development

A multiprocessor operating system has been developed based on the ATAMM
specifications. It is the third prototype system to have been built in the
past two years. The motiviation for this is to give further credibility to
ATAMM through system validation and to provide a testbed experimentation.
This discussion is divided into three design phases. In the system parti-
tioning the ATAMM model is divided into logical components. Combined, these
logical components must fully represent the ATAMM description. The next
phase is the hardware mapping in which the logical components are mapped
into a target architecture. Necessary inter-module communications and
control dialogue paths must also be specified. The multiprocessor operating

system implementation is the final design phase and will be referred to

briefly.

Three logical components have been isolated in the ATAMM partition; the
Graph Manager (GM), Funcitonal Unit (FUN), and Global Memory (GLM). The
Graph Manager is responsible for implementing the state transitions of the
processes. It must monitor all token movement within the CMG required to
determine the fireability of a process. When a process can fire the Graph
Manager must assign the first available Functional Unit to that process.

The Functional Unit will then execute all three NMG transitions for that
particular process. It must also, via interrupt, update all important token
movement within the NMG to the Graph Manager. As a Functional Unit can be
assigned to any process, it must also have the code available for the compu-
tation of every process in the AMG. The Global Memory is the final logical
component in the partition and is responsible for storing data associated
with all Output Full edges in the CMG. Because of this the it must have a
communications path to all Functional Units for both the reading and writing
of data.

The three prototype multiprocessor operating systems previously
mentioned have all had different hardware mappings. Each new mapping was
guided through observaitons made in the development of the previous mapping.
In the current mapping all three logical components are distributed within
each hardware module. The hardware modules chosen are IBM PC/AT's and are
connected on an Ethernet Local Area Network. This mapping presents two
advantages over the previous two in which the logical components were not
completely distributed. First, the redundancy of all logical components
provides a greater degree of fault tolerance. Secondly, a reduction of
inter-module communications, the major bottleneck in multiprocessor design,
is expected as the logical components all reside in the same hardware

module.

The final step in the design process is to develop a multiprocessor
operation system to implement the logical components as designated by the
hardware mapping. 1In addition to the hardware modules, a Sink/Source node
module was designed for the system initialization and monitoring. It is
also responsible for injecting input data into the system and for receiving
output data. The resulting multiprocessor has been successfully developed
and is currently undergoing tests for ATAMM validation. Initial results are

positive and all tests should be completed by the end of Augusr.

III.0 OPTIMUM TIME PERFORMANCE

I1I.1 Introduction

The development of a new graph theoretic model for describing the
relation between a decomposed algorithm and its execution in a data flow
environment is presented. Performance measures of computing speed and
throughput capacity are defined. Lower bounds for these performance
measures are established. In Subsection IIT.2 of this report, the modeling
process to describe algorithms in data flow architectures, ATAMM, is pre-
sented. The model consists of three Petri net marked graphs called the
algorithm marked graph (AMG), the node marked graph (NMG), and the compu-
tational marked graph (CMG). 1In Subsection III.3, the operating character-
istics of these graphs are inQestigated. A state variable description is
presented and used to establish sthe graph properties of reachability, live-
ness and safeness. Time performance measures for concurrent processing are
defined in Subsection III.4. The ATAMM model is used as the basis for
calculating analytically lower bounds for these performance measures. Then
in Subsection III.5, an operating strategy which achieves optimum time per-
formance is developed. Several exa mples are presented to illustrate these

concepts.

III.2 ATAMM Model Development

In this subsection the ATAMM model to describe concurrent processing of
decomposed algorithm is presented. The model consists of a set of Petri
net marked graphs which incorporate general specifications of communication
and processing associoated with each computational event in a data flow
architecture. First, a detailed description of the problem context is

stated. This is followed by the definition of the ATAMM model consisting of

the algorithm marked graph, the node marked graph, and the computational
marked graph. Some familiarity with Petri nets [10] and marked graphs [11]
is assumed in this presentation.

The problems of interest are decision-free, computationally complex
problems as are often found in signal processing and control applications.
A problem description normally results in the definition of a function given
by the triple (X,Y,F). The set X represents the set of admissible inputs,
the set Y represents the set of admissible outputs, and F:X->Y is the rule
of correspondence which unambiguously assigns exactly one element from Y to
each element of X. Associated with a computational problem is one or more
algorithms. An algorithm is an explicit mathematical statement, expressed
as an ordered set of primitive operations, which explains how to implement
the rule of correspondence F. In general, a given problem can be decomposed
by several different primitive operator sets. Also, for a given primitive
operator set, there are often different orderings of primitive operations
which can be specified to carry out the problem. Of special interest are
algorithm decompositions in which two or more primitive operations can be
performed concurrently. For such decompositions, the potential exists for
decreasing the computational time required to solve the problem by increas-
ing the computational resources which implement the primitive operations
program storage and temporary input and output data containers.

The hardware environment for executing the decomposed algorithms is
assumed to consist of R identical processors or functional units (FUNs)
where R has a value in the range of two to twenty. This range of resources
is suggested for practical reasons due to the large-grained aspect of the
algorithm decomposition and the need to maintain small communication times

relative to process times. Each FUN is a processor having local memory for

10

program storage and temporary input andoutput data containers. Each FUN can
execute any algorithm primitive operation. The FUNs share a common global
memory (GLM) which may be either centralized or distributed. The coordina-
tion of FUNs in relation to data and control flow is directed by the graph
manager (GRM). The GRM also may be centralized or distributed. Output
created by the completion of a primitive operation is placed into global
memory only after the output data containers have been emptied. That is,
outputs must be consumed as inputs to successor primitive operations before
allowing new data to fill the output locations. Assignment of a functional
unit to a specific algorithm primitive operation is made by the GRM only
when all inputs required by the operation are available in global memory and
a functional unit is available.

An algorithm marked graph is a marked graph which represents a specific
algorithm decomposition. Vertices of the algorithm graph are in @ one-to-
one correspondence with each occurrence of a primitive operation. The algo-
rithm graph contains an edge (i,j) directed from vertex i to vertex j if the
output of primitive operation i is an input for primitive operation j. Edge
(i,j) is marked with a token if an output from primitive operagér i is
available as an input to primitive operator j. When constructing an algo-
rithm graph, vertices (primitive operations) are displayed as circles, and
edges (input-output gsignals) are displayed as directed line segments con-
necting appropriate vertices. The presence of a token on an edge is indica-
ted by a solid dot placed on the edge. Source transitions and sink transi-
tions for input and output signals are represented as squares. Sources for
constants are not usually included in the algorithm marked graph; however,

triangles are used for this purpose when necessary.

11

To illustrate the construction of an algorithm marked graph, consider
the problem of computing the output of a discrete linear system given a
sequence of inputs to the system. Let the system be described by the state
equation

x(k)

Ax(k-1) + Bu(k)

and output equation

y(k) = Cx(k).

where x is p-vector, us is an m-vector, and y is an r-vector. The primitive
operations are defined as matrix multiplication and vector addition, and the
natural algorithm decomposition resulting from the state equation descrip-
tion is selected. The algorithm marked graph for this decomposed algorithm
is shown in Fig. 1. The initial marking indicates that initial condition
data are available.

The algorithm marked graph is a useful tool for representing decomposed
algorithms and for displaying data flow within an algorithm. However, the
algorithm graph does not display procedures that a computing task. In addi-
tion, the issues of control, time performance, and resource management are
not apparent in this graph. These important aspects of concurrent process-
ing are included in the ATAMM model through the definition of two additional
graphs. The node marked graph (NMG) is defined to model the execution of a
primitive operation. The computational marked graph, obtained from the AMG
and the NMG by a set of construction rules, integrates both the algorithm
requirements and the computing environment requirements into a comprehensive
graph model. These additional marked graphs are defined in the following.

The NMG is a Petri net representation of the performance of a primitive
operation by a functional unit. Three primary activities, reading of input

data from global memory, processing of input data to compute output data,

12

and writing of output data to global memory, are represented as transitions
(vertices) in the NMG. Data and control flow paths are represented as
places (edges), and the presence of signals is notated by tokens marking
appropriate edges. The conditions for firing the process and write tran-
sitions of the NMG are as defined for a general Petri net, while the read
transition has one additional condition for firing. In addition to having a
token present on each incoming signal edge, a functional unit must be avail-
able for assignment to the primitive operation before the read node can
fire. Once assigned, the funcitonal unit is used to implement the read,
process, and write operations before being returned to a queue of available
FUNs. The initial marking for an NMG consists of a single token in the
"process ready" place. The NMG model is shown in Fig. 2.

A computational marked graph (CMG) is constructed from the AMG and the
NMG by the following rules.

1. Source and sink nodes in the algorithm marked graph are represented
by source and sink nodes in the CMG.

2. MNodes corresponding to primitive operations in the algorithm marked
graph are represented by NMGs in the CMG.

3. Edges in the algorithm marked graph are represented by edge pairs,
one forward directed for data flow and one backward directed for
control flow, in the CMG. The initial marking for the edge pair
consists of a single token in the forward-directed place if data
are available, or a single token in the backward-directed place if
data are not available.

The play of the CMG proceeds according to the following graph rules.

1. A node is enabled when all incoming edges are marked with a token.

An enabled node fires by encumbering one token from each incoming

13

edge, delaying for some specified transition time, and then depos-
iting one token on each outgoing edge

2. A source node and a sink node fire when enabled without regard for
the availability of a FUN.

3. A primitive operation is initiated when the read node of an NMG is
enabled and a FUN is available for assignment to the NMG. A FUN
remains assigned to an NMG until completion of the firing of the
write node of the NMG.

In order to illustrate the construction of a computational marked
graph, the CMG corresponding to the algorithm marked graph of Fig. 1 is
shown in Fig. 3. The computational marked graph is useful because it clear-
ly displays the data and control flow which must occur in any hardware
implementation of the model process, and because it clearly displays the
data and control flow which must occur in any hardware implementation of the
model process, and because it provides a hardware independent context in
which to evaluate process performance.

The complete ATAMM model consists of the algorithm marked graph, the
node marked graph, and the computational marked graph. A pictorial display
of this model is shown in Fig. 4. In the next subsection, important oper-

ating characterists of the ATAMM model are investigated.

III.3 Model Characteristics

In the previous subsection, a marked graph model consisting of the AMG,
the NMG, and the CMG is defined as a means to describe concurrent processing
of decomposed algorithms. 1In this subsection the ATAMM model is studied
analytically to determine important graph operating characteristics. First,

a state description which expresses the next graph marking as a function of

14

the present marking and a vector indicating which transition is to be fired
is developed. Then, the marked graph properties of reachability, liveness,
and safeness are considered for the CMG. Two excellent papers by Murata
(11], [12]) on properties of marked graphs are the source for much of the
material presented in the subsection.

Let G be a marked graph consisting of m places and n transitions. The
m-vector Mk denotes the marking vector for G resulting from the firing of
some sequence of K transitions. The following two definitions are necessary
to develop the state degcription of the CMG.

Definition 1: Complete Incidence Matrix. The complete incidence matrix for

a marked graph G is the (nxm) matrix A = [aij] having rows corresponding to

transitions, columns corresponding to places, and where

+1(-1) if place j is incident at transition i

Q= and directed out of (into) the transition

i . .. — - .
J if place j 1s not incident at transition]

Definition 2: Elementary Firing Vector. An elementary firing vector u is
an n-vector having all zero entries except for the ith component which is 1
denoting that transition i is the kth transition to fire in some transition
firing sequence.

To gain insight to the state equation description, it is helpful to
consider the firing of transition k. If a, = -1(+1), place i is an input
(output) place to transition k. Therefore, transition k is enabled if
M(i) = 1 for each input place. When transition k fires, omne token is
removed from each input place and one token is added to each output place.
These observations lead to the following next state description for a marked

graph.

15

Property 1: Next State Description. For a marked graph G with present

marking vector Mk—l and elementary firing vector U the next marking vector

is given by

T
™ Mg AT

The next state description can be used to express the graph marking
resulting from the application of sequences of elementary firing vectors.
This is done in the next definition and property.

Definition 3: Firing Count Vector. Let (ul,u .,ud) be a sequence of

IRk

elementary firing vectors taking a marked graph G from an initial marking MO

to a destination marking M,. The firing count vector x

4 for this firing

d

sequence is defined by

Property 2: State Equation Description. For a marked graph G with initial

marking vector Mb, the marking vector resulting from the application of

elementary firing vector sequence (u ,ud) is given by

1 Ypreen

T
M, = MO + Ax. .

Using the state description of a marked graph as a basis, the property
of reachability is investigated. Necessary and sufficient conditions for a

CMG marking vector to be reachable from an initial marking are established,

16

and it is shown that the number of tokens contained in any directed circuit
of the CMG is invariant under transition firings.

Definition 4: Reachability. A marking My is reachable from an initial

marking M, if there exists a sequence of elementary firing vectors that

0
transforms MO to Md'
The following definition is required to state the reachability condi-

tions for a CMG.

Definition 5: Fundamental Circuit Matrix. ULet T be a tree of a connected

marked graph G. The set of (m-n+1) circuits, each uniquely formed by
appending one cotree edge to the tree, is called the set of fundamental
circuits of G for tree T [13]. The fundamental circuit matrix for G for
tree T is the2(m-n+1 x (m) matrix B, = [bij] having rows corresponding to

fundamental circuits, columns corresponding to places, and where

+1(-1) if place j is containedin f-circuit i and
b = the place and circuit drections agree
1] (disagree)
J g
0 if place j is not contained in f-circuit 1i..

Property 3: Reachability in the CMG. 1In a computational marked graph G, a

marking Md is reach;able from an initial marking MO if and only if BM, =

t
Proof. It is shown in [11] (Theorem 3) that the property is true for marked

BfMO’ where B. is a fundamental circuit matrix for G.

graphs containing no token-free directed circuits. By the construction
rules for the CMG, directed circuits occur in exactly four ways. First,
each NMG consists of a directed circuit which contains an initial marking
token in the "process ready" place. Second, a directed circuit 1s formed

each time an NMG is linked to another NMG. Since one of the two linking

17

places contains an initial marking token and both places are contained in
the circuit, this circuit is never token free. Third, directed circuits
exist in the CMG corresponding to interconnected feedforward paths in the
algorithm marked graph. Each such circuit contains one or more backward-
directed control edge containing one initial marking token. Fourth,
directed circuits exist in the CMG corresponding to directed circuits in the
algorithm marked graph. Each such circuit contains exactly one forward-
directed edge containing one initial marking token representing initial
condition data. Therefore, the CMG contains no token-free directed circuits
and the property follows.

As a direct consequence of the reachability property of the CMG, it can
be shown that the number of tokens in any directed circuit is constant.
This characteristic is stated as Property 4.

Property 4: Token Count Invariance. In a CMG, the number of tokens con-

tained in a directed circuit is invariant under transition firing.

Proof. Consider a directed circuit C of a CMG. The entries in the row of a
circuit matrix B corresponding to C are *1 in columns representing edges in
C and are 0 otherwise. If M is a marking vector, the component of BM
corresponding to C is equal to the number of tokens in directed circuit C

under marking M. Therefore, if M, is any marking reachable from an initial

d

marking M., it follows from Property 3 that BMd = BM That is, the number

0
tokens in directed circuit C under initial marking MO is equal to the number
of tokens under any marking Md reachable from MO. This completes the proof.

Next, liveness and a closely related property called consistency are

considered. It is shown that the CMG is live and consistent.

18

Definition 6: Liveness. A marked graph G is said to be live for a marking

M if, for all markings reachable from M, it is possible to fire any tran-

sition of G by progressing through some transition firing sequence.

Property 5: Liveness in the CMG. The computational marked graph is live

for all appropriate initial markling vectors.

Proof. It is shown in [12] (Property 2) that a marked graph G is live for a
marking M if and only {f G contains no token-free directed circuits in mark-
ing M. As stated in the proof of Property 3, for all appropriate initial
markings Mo, the CMG contains no token-free directed circuits. Therefore,
the property follows .

Definition 7: Consistency. A marked graph G is said to be consistent if

there exists a marking M and a transition firing sequence S from M back to M
such that every transition occurs at least once is S.

Property 6: Consistency in CMG. A connected computational marked graph G

is consistent. In addition, each transition of G occurs an equal number of
times in a firing sequence from a marking M back to M.

Proof. From Property 2, if a CMC is cosistent, then there exists a marking
M.d = MO and a firing count vector X, > 0 such that Aixd = 0. The converse
is also true. The incidence matrix for a marked graph G is an (n x m)
matrix A. If G is connected, then it is known (13] that the rank of A is n-
1, and thus the null space of AT has dimension one. It is observed that

T
each row of A has one (1), one (-1), and all remaining terms are (0).

Therefore, if Cj denotes the jth column of AT’ it follows that

19

. T . . .
Thus, there exists a vector x, = [k k ... kK], k> 0, which uniquely satis-

d
fies ATxd = 0. This completes the proof.

The final graph property considered in this section is safeness. This
property is first defined, and then it is shown that CMG is safe.

Definition 8: Safeness. A marked graph G is said to be safe for marking M

if, for all markings reachable from M, no place contains more than one
token.

Property 7: Safeness in the CMG. The computational marked graph is safe

for all appropriate initial marking vectors.

Proof. By Property 4, the token count for each directed circuit of the CMG
is invariant under transition firing. Therefore it is sufficient to show
that each edge of the CMG belongs to at least one directed circuit contain-
ing a single token. By the construction rules for the CMG, all CMG edges
can be classified into two groups, NMG edges and linking edges. NMG edges
occur in groups of three and always form a directed circuit containing one
token. Linking edges occur in pairs, one forward directed and one backward
directed, and also form a directed circuit with the forward directed edges
of the NMG. One of the linking edges, but not both, always contains one
token while the forward directed edges of the NMG contain no tokens. There-
fore, each edge of the CMG is contained in a directed circuit with one

token, and the property follows.

II1.4 Performance Analysis

The importance of the ATAMM model is that it establishes a context in
which to investigate the performance of decomposed algorithms in multipro-
cessor data flow architectures. In this subsection, performance measures

indicating computing speed and throughput capacity are defined. Bounds for

20

these quantities are calculated analytically from the algorithm marked graph
and the computational marked graph. This information is essential for effi-
ciently matching algorithm decompositions with architecture implementations.
The work presented in this subsection is an interesting application and
extensiorn of recent investigations of the per formance of Petri Nets [1&4],
[15] and marked graphs [16].

It is assumed that a decomposed algorithm is implemented in a multipro-
cessor architecture containing R computing resources or functional units.
Each functional unit is capable of performing any of the primitive oper-
ations whose sequence defines the decomposition. A computational task con-
sists of completing the algorithm for one frame of data and is initiated
when an input data token from the source node is encumbered. Task output
occurs when a corresponding output data token is deposited at the output
sink node. A task is completed when all computing associoated with the task
is completed. It should be noted that task output and task completion do
not always coincide. In many iterative signal processing algorithms, com—
puting to generate initial conditions for the next iteration often occurs
after an output has been calculated. Task completion is usually indicated
in the AMG or CMG by the return of the graph to some steady-state initial
marking. To facilitate measurement of throughput capacity, it is assumed
that tasks are repeated periodically with new input data sets. New data
sets are available continuously as input tokens from the input source node.
Included in this problem class are iterative algorithms where the present
task requires as inputs data from previous task calculations.

Concurrency in this problem getting occurs in two ways. First, differ-
ent functional units may perform simultaneously several primitive operations

belonging to a single task. This type of concurrency is referred to as

21

vertical concurrency. Vertical concurrency has a direct effect on task
computing speed. It is limited by the number of primitive operations that
can be performed simultaneously in a given algorithm decomposition, and by
the number of functional units available to perform the primitive opera-
tions. Second, different functional units may perform simultaneously r
primitive operations belonging to different tasks sequentially input to the
computing system. Called horizontal concurreacy, this type of concurrency
has a direct effect on throughput capacity. It is limited by the capacity
of the graph to accommodate additional task inputs, and by the number of
functional units available to implement the tasks. 1In the following it is
shown that the process of algorithm decomposition imposes bounds on the
amount of vertical concurrecy and horizontal concurrency possible in a given
problem. If sufficient computing resources are available, operation at
these bounds can be achieved. If the number of computing resources is limi-
ted, the bounds cannot be reached simultaneously and trade-offs between the
amount of vertical concurrecy and horizontal concurrency are possible.

Three performance measures for concurrent processing are defined. The
first two parameters, TBIO and TT, are indicators of computing speed and
reflect the degree of vertical concurrency. The third parameter, TBO, is a
measure of throughput capacity and thus reflects the degree of horizontal
and vertical concurrency.

Definition 9: TBIO. The performance measure TBIO is the computing time

which elapses between a task input and the corresponding task output.

Definition 10: TT. The performance measure TT is the computing time which

elapses between a task input and the completion of all computation associ-

ated with that task.

22

Definition 11: TBO. The per formance measure TBO is the computing time

which elapses between successive task outputs when the graph is operating
periodically in steady-state.

The remainder of this section is devoted to developing lower bounds for
these performance measures.

Let G denote an algorithm marked graph representing as decomposed
algorithm. The lower bound for TBIO is the shortest time required for a
data token from the data input source to propagate through the graph to the
data output siok. Similiarly, the lower bound for TIT is the shortest time
required to complete all computing activity initiated by the inmjection of a
data input source. These shortest times are the actual performance times
when only a single task ig active in the graph during any time interval (mo
horizontal concurrency), and as many computing resources as are required are
available (maximum vertical concurrency). Under these operating conditions,
lower bounds for TBIO and TT are calculated by identifying certain longest
paths in a graph obtained from the algorithm marked graph. This new graph,
called the modified algorithm graph GM’ is defined and then used to
determine lower bounds for TBIO and TT.

Definition 12: Modified Algorithm Graph. let p, be a place of G, directed

from transition t. to transition tg which contains a token of the initial
marking. The modified algorithm graph GM is obtained from the graph G by
the following construction rules.
1. Place p; is deleted from G.
2. A new place p.,, directed from the data input source to transition
ts, is added to G.
3. A new output sink s different from all other outpul sinks, and a

new place p.,, directed from tramsition t_ tO 8., are added to G.
12 T 1

23

4. The above rules are repeated for each place of G containing a token
of the initial marking.
Lower bounds for TBIO and TT are presented in Theorem 1 and Theorem 2

respectively.

Theorem l: Lower Bound for TBIO. Let PI be the ith directed path in GM
from the data input source to the data output sink, and let T(Pi) denote the

sum of transition times for transitions contained in P_. Then,
i

TBIO . = Max {T(2,)},
where the maximum is taken over all paths Pi graph GM'

Proof. Without loss of generality, let te be the last transition in all
paths Pi directed from the data input source to the data output sink. Tran-
sition tf is enabled when each input place for tf contains a token. Since
by assumption a computing resource is available, te fires as soon as it

becomes enabled. Let pq be the last input place for t_ to acquire a token,

f
and let tg be the input transition for place pq. Continuing this labeling
procedure results in a backward path construction process. This process is
repeated, first at tg’ and then at each succeeding transition until the data
input source is reached, identifying a path pj. By the construction process
for the path, it is clear that T(Pj) = Max {T(Pi)}’ where the maximum is
over all paths Pi in GM. It is also clear that TBIOLB can be no shorter
than T(Pj) so that TBIOLB > T(Pj). Since a computing resource is available
when each transition in Pj is enabled, the time between input and corre-

sponding output can be no longer than T(Pj) so that TBIOLB < T(Pj). There-

fore, TBIOLB = T(Pj) = Max {T(Pi)}’ where the maximum is over all paths Pi

24

in GM. This completes the proof.

Theorem 2: Lower Bound for TT. Let Pi be the ith directed path in GM from

the data input source to any output sink, and let T(Pi) denote the sum of

transition times of transitions contained in P,. Then,
i

T, = Max {T(2)}
where the maximum is taken over all paths Pi in graph GM.

Proof. By the construction rules for graph GM’ a task is initiated when
input data tokens are input from the data input source, and is completed
when all output sinks have accepted tokens. Therefore, TT is the time which
elapses from injection of input tokens to the arrival of a token at the last

fired output sink. Let T(Pt) = Max{T(Pi)}, P be the longest path

i in ™’
time of paths from the data input source s; to any output sink, say S, -
Since a token must reach sink S, before a task is completed, it follows that
TTLB > T(Pt)' Since a resource is available for each transition to fire
when enabled, and since Pt is the longest path in GM’ it also follows that
TTLB < T(Pt)' Therefore, TT , = T(Pt) = Max{T(Pi)}, where the maximum is
over all paths Pi in GM' This completes the proof.

To illustrate the application of Theorem 1 and Theorem 2, TBIO . and
TTLB are computed for the algorithm graph shown in Fig. 1. For this exam-
ple, the following transition times are assumed: T(1) = 4, T(2) = 1, T(3) =
5, and T(4) = 6. The modified algorithm graph coresponding to Fig. 1 is
shown in Fig. 5. The modified algorithm graph contains two paths directed

from the data input source 8; to the data output sink 85 Path P1 consists

of edge set {1, 2, 3, 4} with T(Pl) = 10, and path P2 consists of edge set

25

{5-1, 3, 4} With T(PZ) = 6. Therefore, since T(Pl) > T(Pz), path Pl deter-

mines the lower bound for TBIO and TBIOLB = 10. The modified algorithm

graph contains two additional directed paths from the data input source 8

to the output sink ss. Path P3 consists of edge set {1, 2, 6, 5—2} with

T(P3) = 11, and path P4 consists of edge set {5-1, 6, 5-2} with T(Ph) =
7. Since T(P3) > T(Pl) > T(PA) > T(Pz), path P3 determines the lower bound
for TT and TTLB = 11.

Next a lower bound for the performance measure TBO is presented. Let G
be a computational marked graph representing a decomposed algorithm. It is
assumed that operating conditions for G are set to maximize horizontal comn-
currency. That is, data tokens are continuously available at the data input
source, and as many computing resources as needed can be called to perform
primitive operations. With these conditions, the graph plays periodically
in steady-state, and TBOLB is the shortest time possible between successive
outputs.

Theorem 3: Lower Bound for TBO. Let G be a computational marked graph and

let Ci be the ith directed circuit in G. The notation T(Ci) denotes the sum
of transition times of transitions contained in C,, and M(C,) denotes the
i i

number of tokens contained in Ci' Then,

TBO , = Max {T(C,)/M(C},
where the maximum is taken over all directed circuits in G.

Proof. Without loss of generality, let te be the output transition in G so

that an output is produced each time tf completes the firing. Then TBOLB is
the minimum firing period of tranmsition e By Property 6, G is consistent

so that all transitions of G fire periodically with minimum period TBOLB.

26

It is shown in [12] (pp. 58-60) that the minimum firing period of each tran-
sition of a marked graph is given by Max{T(Ci)/M(Ci)}, where the maximum is
taken over all directed circuits Ci in G. Therefore, the theorem follows.
The computational marked graph shown in Fig. 3 is used to illustrate
Theorem 3. This CMG contains many directed circuits. However, the directed
circuit which contains all NMG nodes of transitions 2 and 4 contains only
one token and maximizes the ratio T(Ci)/M(Ci)' Therefore, the shortest time
possible between successive outputs in this graph is TBOLB = 7. In the next
subsection, a strategy for achieving optimum time performance is investi-

gated.

III.5 Strategy for Optimum Time Performance

A model describing decomposed algorithms for implementation in a dis-
tributed data flow architecture is described in Subsections III.2 and IIIL.3,
and performance measures are defined in Subsection III1.4. An important
problem remaining is to develop an operating strategy for the ATAMM model
which achieves optimum time performance with a minimum number of computing
resources. Unfortunately, this problem is equivalent to a class of schedul-
ing problems which is known to be NP-complete. Thus, there exists no algo-
rithm for obtaining an optimum solution which is better than enumerating all
possible solutions and then choosing the best one. However, an important
suboptimal operating strategy which achieves optimum time performance, but
possibly requires more than the minimum number of computing resources, has
been developed. This strategy is presented and illustrated by example in
this subsection.

When presented with continuously available input data sets, the natural
behavior of a data flow architecture results in operation where new data

sets are accepted as rapidly as the available resources permit. That is,

27

the architecture naturally operates at high levels of horizontal concurrency
with the possible loss of capability for achieving high levels of vertical
concurrency. This results in performance characterized by high throughput
rates, TBO=TBOLB, but relatively poor task computing speed so that TBIO > >
TBIOLB and TT > TTLB. In many signal processing and control applications,
it is important to achieve both high throughput rate and high task computing
speeds. Often, designers are willing to provide extra hardware to realize
optimum time performance. The suboptimal operating strategy presented in
this section results in performance having the following characteristics.

and TBOLB' RMax 1s

computed in implementing the strategy, and represents the minimum

. Wh R i achi T

1 en > RMax’ operation achlieves BIOLB,
number of resources which insures maximum horizontal concurrency
and maximum vertical concurrency under this strategy.

. When R >R > . operation achieves TBIO and TT But TBO

2 Max RMin® °P LB LB’
> TBOLB. The strategy preserves task computing speed or vertical
concurrency at the expense of throughput rate or horizontal con-
currency. RMin is also computed in implementing the strategy, and
represents the minimum number of resources needed to maintain

vertical concurrency with limited horizomtal concurrency.

3. When RMin > R» 1, operation continues but performance degrades so

that TBIO » TBIO TT > TTLB, and TBO » TBO

LB’ LB’

Implementation of the operating strategy is illustrated in Fig. 6. All
that is required is to limit the rate at which new input data are presented
to the CMG. This is accomplished by adding a control transition connected
in a directed circuit with the data input source. The control transition

imposes a minimum delay of D time units between inputs. Delay D is chosen

according to the following rule:

28

TBO R> R

LB Max
= R >R » R,
b TBOMin Max Min
TCE R. <R»>» 1.
Min

TCE denotes the total computing effort required to complete the task, and
TBOMin’ RMax’ and RMin are computed as part of the strategy design proce-
dure.

The operating strategy design process consists of five steps. These
steps are presented and explained in the remainder of this subsection. An
operating strategy is developed for the example algorithm graph shown in
Fig. 7 to illustrate each step as it is presented.

Step 1. Choose a convenient transition firing rule. A rule to determine
when an enabled transition in the CMG fires must be specified. A natural
rule is to specify that enabled transitions fire when a computing resource
is available. If conflict exists, such as when there are more enabled
transitions than computing resources, then firing occurs according to a
priority ordering of the transitions. For the example algorithm graph, the
highest to lowest priority ordering of the transitions is chosen as (5,4,3,-
7,2,6,1).

Step 2. Determine TBOLB. The performance bound TBO;q is found from the
computational marked graph by application of Theorem 3. The CMG correspond-
ing to the example algorithm graph is shown in Fig. 8. The directed circuit
identified 1in this figure contains 6 transition time units and 2 tokens,
and maximizes the ratio T(Ci)/M(Ci) for all directed circuits. Therefore,
TBOLB = 3.

Step 3. Determine the resource utilization envelope of a single task

required for maximum vertical concurrency at steady-state with TBO = TBOLB.

29

The purpose of this step is to determine the number of computing resources
required as a function of time to achieve maximum vertical concurrency in a
single task. The envelope is determined by playing the graph assuming
unlimited resources and an input rate of ’I‘BOLB until steady-state operation
is reached. The resource utilization envelope is obtained by counting the
number of computing resources used for a single task during each time
interval. The play of the example algorithm graph under these conditions is
shown in Fig. 9, and the resulting resource utilization envelope is shown in

Fig. 10.

Step 4. Stabilize the resource utilization envelope by adding control
places as necessary. If the time between inputs to the CMG is increased
above TBOLB, the resource utilization envelope may change from that observed
in Step 3. Since knowledge of the envelope is required to calculate the
number of required resources, additional places are appended to the AMG and
the CMG to freeze the shape of the envelope. For example, the play of the
example algorithm graph of Fig. 8 with an injection time of 4 is shown in
Fig. 11. At this slower injection rate, transition 6 fires one time unit
earlier. To prevent time movement of transition 6, a control place directed
from transition 2 to transition 6 is added. This place prevents the firing
of transition 6 until transition 2 has completed firing. Thus the resource

utilization envelope computed for an input period of TBO B is the envelope

L
for all input periods TBO » TBOLB.

Step 5. Compute RMax’ RMin’ and TBOMin(R) using the resource utilization
envelope. R is determined by overlaying resource utilization require-

ments, each delayed by TBOLB with respect to the previous one, as shown in

Fig. 12 for the example. is equal to the largest resource requirement
x q

30

during any time interval within the steady state operating period. RMin is
the minimum number of resources necessary Lo insure maximum vertical con-
currency with no horizontal concurrency. This number is equal to the maxi-
mum resource requirement indicated in the resource utilization envelope for
a single task. For the example problem, RMax = 5 and RMin = 3. The value
of TBO . for each resource number R between RM and RM. inclusive, 1is

Min ax in
determined by increasing the delay between overlapping resource utilization
envelopes until the maximum resource requirement is R. TBO. is the small-
est input delay to produce this resource requirement. For the example, the
calculations of TBOMin for R = &4 and R = 3 are illustrated in Fig. 13 and
Fig. 14 respectively. The results of these calculations are TBOMin(A) = 3.5
and TBO . (3) = 4.

Min
The performance of the example algorithm graph is summarized in Fig.

. i ti B = = B = 31 hi
15 Optimum time performance of T IOLB TTLB 7 and T OLB 3 is achieved

for R > RWax = 5. At R = 4, TBIO and TT remain at the optimum values and
I\
TBOMin decreases to 3.5. At R = 3, TBIO and TT again remain at the optimum
values and TBO... decreases to 4. For values of R below RM' , time perform-
Min in

ance generally degrades. However, in this example TBIO and TT remain at 7
for R = 2, while TBOMin decreases to 6. Finally, at R = 1, performance
degrades to TBIO = TT = TBO = TCE = 10. Another perspective of algorithm
performance is shown in Fig. 16. This figure displays throughput rate,
(1/TBO), as a function of the number of functional units R. The peak height
of each bar indicates the maximum throughput rate which can be achieved with
the indicated number of processors. The bars also indicate more clearly
that operation at any throughput rate less than maximum is possible for a

given number of functional units. This design procedure is easily applied

31

to much larger algorithm graphs more representative of actual signal

processing and control problems.

32

IV.0 DIAGNOSTIC TOOL DEVELOPMENT
IV.1 Analyzer Development

IV.1.1 Introduction

Concurrent processing is the capability of a computer system to execute
two or more tasks at the same time. For example, a processor may execute a
given computation at the same time that an I/0 coprocessor performs an 1/0
operation. There are new computer architectures that organize processors in a
parallel fashion requiring customized algorithms to take advantage of the
parallelism of the systems. However, the models developed to describe these
architectures do not adequately model the issues of scheduling, coordination,
and communication (Ref. 17). On the other hand, the strategy proposed by
Stoughton and Mielke (Ref. 17-19) addresses these particular issues. The
strategy uses timed Petri nets (Ref. 20) to model processor behavior for each
computational node of an algorithm graph.

Detailed data are needed to evaluate and study the performance of a
concurrent processing system. Data such as the function of concurrency with
respect to time can be investigated. Therefore, a sophisticated evaluation of
the concurrent system can be performed. To achieve this objective, it is
indispensable that data, such as when the processing of a data packet is
initiated and when it is terminated, be available. Performance measures such
as TBIO or TBO can be obtained from global information such as when an input
is read by the graph and when its corresponding output is written. This kind
of information can be obtained from an outside observer which monitors the
system. The best information the system is able to provide is the firing of
every transition of every node during execution. With these data, a more
comprehensive study of a concurrent processing system can be done. Although

the system itself is used to provide the information, it does not affect the

33

performance of the system due to the relatively low speed communication chan-
nels used in the prototype. Another method to probe the system should be
devised if high speed communication channels are to be used. This chapter
describes an analyzer system that yields the required evaluation. In Sub-
section IV.1.1, a prototype system and its communication events will be close-
ly examined. What the Diagnostic Routines do in the Graph Manager and their
effect in the overall performance is contained in Subsection IV.1.3. How
information of internal events is recorded is presented in Subsection IV.1.4,
In Subsection IV.1.5, generalities of the Analyzer program are examined,
including what information is input to it and what is obtained as output data.
In Subsections IV.1.6, IV.1.7 and IV.1.8, how the Analyzer program processes
this output data to generate measurement information is presented. These
measurements include TBIO (Time between Input and Output), TBI (Time between
Inputs), TBO (Time between Outputs), concurrency of the computing system and
general average process times. In the last two Subsections IV.1.9 and
IV.1.10, a different tool is presented. This tool integrates the simulation

-of the system and the analyzer in one program.

Iv.1.2 ototype and {t ation Events

A prototype of a concurrent processing system was developed. It was
used to prove some of the theories of the graph representation of such systems
and to establish a basis for comparison of the simulation program to its
hardware counterpart. The block diagram of the prototype, which was origi-
nally presented in (Ref. 17), is shown in Fig. 17.

The system consists of several S-100 units using Intel 8088 micropro-
cessors. Each unit has I/0 boards to communicate with the external world as

well as 32k of random access memory (RAM). For test purposes, there are three

34

units acting as processing elements or Functional Units, one as the Graph
Manager and one that serves as Global Memory. The communication between them
is made through serial ports (Standard RS-232). An IBM Personal Computer XT
(IBM-PC/XT) is used to communicate with the Graph Manager. A communication
channel can be set through the Graph Manager to the Functional Units and the
Global Memory.

The Graph Manager is designed to monitor the graph execution and is
itself controlled by the data flow in the system. The Graph Manager keeps a
record of the places in the graph as well as which functional unit is per-
forming which process node. The Graph Manager "schedules" the assignment of a
functional unit to a process node according to the priority of the nodes,
functional units available and the process nodes that can be fired.

A serial communication link is set between the Graph Manager and every
Functional Unit. A link is also set between the Global Memory and every
Functional Unit. Serial communication between the IBM-PC/XT and the Graph
Manager is used for initialization, and for controlling and monitoring of the
system.

When a node which is found that can be fired, i.e., its input places are
full and its output places are empty (the last requisite for single node model
only), such node is assigned to a Functional Unit; i.e., that node is fired.
To fire a node, a communications protocol is initiated between the Graph
Manager and an available Functional Unit, as shown in Figure 18. This proto-
col begins with the code word D for Do; it is followed by a Task Number, the
Inputs places or labels, and the Output places. This communication event is
called Assign Task. This information, which is given to the Functional Unict,
{s taken from the graph data that are in the Graph Manager’'s memory. In this

step a task or a node is said to be assigned to a Functional Unit.

35

The next piece of communication done between the assigned Functional Unit
and the Graph Manager is the acknowledgement from the Functional Unit that the
input places have been read (Acknowledge Input). The Functional Unit reads
the data from the Global Memory using another protocol before Acknowledge
Input is sent to the Graph Manager.

Process of data is started as soon as the input data are acknowledged by
the Functional Unit. The unit communicates with the Graph Manager indicating
that the process is finished when the process is done and that it is ready to
place the output data in the Global Memory. The token information of the
output places of the associated node is examined and it is verified that the
output places are empty (the latter event is true only for the triple node
model). The code for Outputs Empty is sent to the Functional Unit that is
working on that node.

The data is written to the output places once the Functional Upit has
clearance for writing. The Graph Manager is informed when the output is
written and the Functional Unit is freed; i.e., the Functional Unit is in a

wait state until the next task is assigned to it.

IV.1.3 Graph Manager Diagnostic Routines

The entire concurrent processing system is accessible to the Graph Man-
ager; therefore, the Graph Manager is the most suitable subsystem to inform
the outside world of what events are taking place in the concurrent system.

In order to keep a proper time record of the different events in the
graph, an internal real-time clock is started simultaneously with the exe-
cution of the graph. As each event is recorded, the clock is read to register

the time at which the event is taking place.

36

There are five different events that are recorded. These correspond to
the communication events previously mentioned:

1 (F) Firing of a process node and binding to a Functional Unit.
"aAssign Task".

2 (1) Input places read by the Functional Unit (process node) .
nAcknowledge Input”.

3 (P) Process done by the Functional Unit (process node) .

4 (S) Output places empty. "Enable Outputs”.

5 (0) Output places written by the Functional Unit (process node) .

nacknowledge Output”.

1t should be noted that after a node and a Functional Unit have been
assigned to each other, they cannot be distinguished from each other. They
become one entity and is the only time when either one, the node or the
Functional Unit, is considered active.

Every event is recorded in the following format:

T{clock}N{node number){event}[functional unit number]

where (event) can be any of the next letters:
F (The node fires),
I (The input data is read),
P (The process is done),
S (The output places are empty), and

0 (The output data is written).

37

The parameter of [functional unit number] is only written when {event) is
equal to 'F.’ To simplify the reading of the file, commas are inserted
between every letter and number. The output file of the Simulation program
(Ref. 21) does not require such an adjustment or addition since it is already
provided with commas,

Any probe that is installed in a system for testing purposes introduces
some error in the reading. The probe used here is no exception to the rule
and, in order to minimize the error, a special interrupt driven routine was
written. The diagnostic routines use a buffer to write the information of
every graph event. This buffer is accessed every time the real-time clock is
incremented and if the serial port to the IBM-PC is ready to send a character,
this routine sends the next character in the buffer. If there are no charac-
ters in the buffer or the serial port is not ready the routine just increments
the internal clock and exits without further action. To minimize the time
that would take to write the commas to the output, a post-processor program
was written that inserts the commas in their proper places. Due to the low
speed communication channels, this scheme is good enough to minimize any delay

introduced in the system by these Diagnostic Subroutines.

IV.1.4 Sequential Accou Concurrent Processin

All the events that are reported in the format explained in Subsection
IV.3.3 are captured in a file that becomes what has been called the "ticker
tape"”. This file contains all the necessary information to analyze the per-
formance of the system. This file is called the FIPSO file because it
accounts for Firing, Input, Process, OutStat and Output of every node in the

graph. OutStat is the "enable outputs” signal sent by the Graph Manager to

38

i

the Functional Unit as shown in Fig. 18. A sample of a FIPSO file is pre-
sented in Fig. 19.

1f the time between two different events is desired, the difference
between the first and the last has to be computed. Or if the number of
computers that were working at the same time during a certain interval is
requested, the computations or procedures to obtain this number are much more
complex, but not impossible to obtain.

With this kind of information, the encumbering and depositing of tokens
can be monitored, although there is no direct information about these parti-
cular events. Knowing the graph topology, the depositing of tokens is done
when a node writes data to its output places. The tokens are encumbered when
a specific node is fired. Although it is not obvious, any type of event can
be registered with this information. Getting the information can be a complex
job but with the help of a specialized program this can be done rather

easily.

IV.1.5 Analyzer Program

The Analyzer is a program that reads FIPSO files and obtains different
data from the execution of the given graph (see Fig. 20). The data is
processed to obtain such information as TBO and TBIO.

The file is read and the information is placed in a two-dimensional
array, which for convenience is also called the FIPSO array. This array has

fields defined as follows:

39

Clock Node 1 Node 2 Node 3

Event #1 |] (] (] (]
Event #2 |] (] [] []
Event #3 |] (] (] (]

The clock field contains the value of the clock at the time of the event.
The node field contains a code that indicates the event the node is in and, if
in any, what functional unit is working on it.

The primary display of this program shows the activity of every node in
the graph (see Fig. 21). The display is actually several plots aligned in
time, i.e., all of them sharing the same time axis. In this way the activity
of every node can be compared with the rest. For example, it can be deter-
mined if several nodes were active at the same time. Another display shows
the activity of every functional unit instead of the nodes (see Fig. 22).
Among other data, the concurrency of the system can be extracted at any inter-
val in time or for the entire graph execution. In this manner, there is a
display of the concurrency as a function of time. Other data are obtained and

are explained in detail in the following sectioms.

IV.1.6 Measurement of TBIO, TBO, TBI

To measure TBIO, TBO, and TBI of the system, there is the need to know
which are the input and output nodes of the system. Since this cannot be
reliably extracted from the obtained information, these are parameters that

have to be supplied beforehand to calculate the desired data. After the

40

program determines which nodes are the input and the output of the system, it

proceeds to search in the matrix for occurrence of

1) When input data is read by the input node, and

2) When output data is written by the output node.

These times are recorded in another matrix for further use. Every time an
output is written by the output node the time from its corresponding input is
calculated and stored in the same array.

After every output has been recorded, TBI and TBO are calculated. For
TBI, this is done starting from the last input entry and going down to the
second input entry, substituting the ith entry by the difference of the ith
entry and the i-lst entry. Calculation of TBO is done similarly, except that
the output data is used instead of the input data. This output difference

calculation may be expressed by

t0f = tOi - t0i-1 for 1 = n, n-1, n-2,...2

where n is the number of outputs. The input difference calculation is simi-

larly performed by

tii = tIi - tIi-1 for i = n, n-1, n-2,...2

where n is the number of inputs.
The display yields such information as when the system reached steady
state (see Figure 23). When TBI, TBO, and TBIO do not change from one data

packet to the next the system is said to be in steady state.

41

IV.1.7 Concurrency Measurement

Concurrency is the property associated with the capability of a computing
system of executing two or more tasks at the same time. The concurrency
function or what has lately been called the "Resource Utilization Envelope"
can be measured or displayed in a rather simple fashion.

To obtain the concurrency information, the FIPSO array is swept in its
two dimensions. The array is swept along the "event" rows and along the
clock and nodes columns (see Subsection 3.4). At every row in the array,
every node is checked for activity and the sum of all active nodes is obtained
for that time or row. This is done for every row in the array and the
function of number of resources vs. time is plotted on the screen. This is
the Concurrency Display (see Fig. 24).

There is a value that is also obtained. It is called Computing Power
(CP). This value is equal to the area under the curve of the Concurrency
Display or the "Resource Utilization Envelope". The units of this figure is

"computer-seconds"”. The "Resource Utilization" can be obtained by

CP * 100
n* Tg

RU =

where RU is Resource Utilization (%), CP is Computing Power (computer-
seconds), n is the number of resources (computers) and TE is Execution Time
(seconds). These two quantities can be obtained for the entire execution or
for a portion of it. The interval over which the evaluation is made is

defined by the user.

42

A table showing percentages of numbers of resources concurrently used
with respect to the execution time is displayed. Thus the maximum possible
concurrency and its percentage with respect to the execution time can be

determined.

1V.1.8 General Statistics

The different transition times have an exact value in the original simu-
lation program (Ref. 21). However, in a hardware implementation there are
some variations in these transition times. For example, a memory reading may
take a longer or shorter time than expected.

There is a menu option that allows the user to get the average transition
time for any node. The only parameter supplied is the node number. The
program will scan the FIPSO array and calculate the average time to read the
input data, process the data, wait for output place clearance and write the
output data for the node indicated.

In a hardware implementation of this concurrent system, the different
computers that serve as resources or functional units may have different main
clocks, or can be totally different computers and of course have some differ-
ences in the time that they would take to either read, process or write data.
This provides a way to obtain average time values of the activities in the

system for any given node.

IV.1.9 Graph Sigulatiog(AnaLx;e;

The Analyzer program is an {nvaluable tool for the analysis of the FIPSO
file of a single simulation. 1f the need for exploring the effect of param-

eter variation arises additional program support {s needed. This program is

43

called Graph Simulation/Analyzer program. This program controls the simu-
lation and, immediately after execution, analyzes its data to obtain the
desired result or reading. Sometimes only a certain number of values are
required to be analyzed and then this specialized program is ideal for auto-
mated or batch simulation and execution analysis. An overview of its features
is presented in this subsection.

The Graph Simulation/Analyzer program contains basically the same simu-
lation kernel that the original Simulation program (Ref. 21). It has been
modified to provide the use of random variables as transition times.

The original Simulation program is not only a simulator but also a graph
creator, i.e., the graph need not be defined when the program is called, but
can be defined by the use of graphics commands. The Graph Simulation/Analyzer
needs to be supplied with a graph description and simulation control (GDsC)
file (see Fig. 25). This is a text file that can be created with any pure
ASCII word processor and the command syntax can be found in the manual of the
program in the appendix of this thesis.

The main purpose of this new program is to "schedule" a series of simu-
lations of a graph, change parameters, and collect specific output data such
as ATBIO (Average TBIO in steady state) or the usual FIPSO files. One of the
advantages over the former simulation program is that most of the program °
setup can be in the GDSC file or, in short, the graph file. 1In this way,
setting up a simulation can be as quick as loading the graph file and typing a
few keystrokes. One of the disadvantages is that the execution of the graph
cannot be seen graphically. The only parameters that can be observed are the
clock and the number of outputs from the graph. Even the clock can be
suppressed from updating to reduce screen update overload. A notable differ-

ence with respect to the former simulation is the capability of adding random

44

variables to the different transition times in a graph. The range of vari-
ation is specified by the user in the graph file.

The new program is suitable to integrate a design tool for the concurrent
processing systems under study. The automatic control of the simulation
routine makes the program ideal to find, through iterations, some optimum
performance parameters for a given graph.

The program provides on-line context-sensitive help. At every stage
where user intervention is expected, the key Fl can be typed and a window
appears providing specific explanation of what the user may do at this part of
the program. The help window information can be as simple as the statement of
the purpose of the menu option or examples to illustrate the possible choices.

This program is expected to be changed in the future and to undergo a
series of enhancements. This is the reason it was written in C language, a
flexible and simple, yet powerful and easy-to-maintain language. The program
can be easily expanded or modified to meet the future demands of the ongoing

research.

Iv.1.10 Output of the Graph Simulation/Analyzex

The Graph Simulation/Analyzer program generates only four kinds of files.
These are Average Time Between Input and Output (ATBIO), Average Time Between
Inputs (ATBI), Average Time Between Outputs (ATBO) and the FIPSO files. The
naverage" files collect data that is calculated once the system has reached
the steady state. The computation of the steady state values is done by the
use of a running average, in the following manner:

1- An average is computed for the first six outputs (TB10,TBI or TBO) and

stored in an average array.

45

2- The first of those outputs is then discarded and the seventh output is
taken to form the next six outputs.

3- Another average is computed for the new six outputs and is stored in
the next location of the average array.

4- This procedure is applied until there are no more outputs left to work
with.

5- The next step is to find which of the computed averages is within a
+/- 1% of its predecessor.

6- An overall average is calculated beginning with this predecessor up to

the last average and this is the ATBIO, ATBI or ATBO.

The FIPSO files are obtained the usual way, that is, from the recording
of every event, every event code is translated to text and the FIPSO file is
created. This file contents can be examined in the Analyzer as explained in
the last sections.

There are some instances when, although the steady state has been
reached, the program will print "N/SS" (Non-Steady State) instead of the
value sought. This usually occurs because the running average has too few
outputs to work with and the reaching of steady state is hidden in one of the
averages, i.e., the +/- 1% is too restrictive to detect it. Another error
message that can be given is :"N/EO," meaning "Not Enough Outputs." The
reason for this message is that there are less than nine outputs to work with
and it makes it difficult to calculate the average.

The method of running averages is adequate to find when the graph reaches
steady state. However, it requires many graph outputs which may create a

great time burden in terms of simulation time. These computation factors

46

depend on the number of nodes of the graph, execution time and number of

resources available.

v.0 EXPERIMENTAL RESULTS

v.1 Introduction

This Subsection presents the use of the Analyzer and the Graph Simu-
lation/Analyzer programs to evaluate the performance of two different graphs.
In Subsection IV.4.1, a graph with parallel paths is investigated. TBOLB and
TBIOLB are calculated and a simulation of the system is performed. Analysis
of the output data 1is used to obtain the pinimum number of resources necessary
to obtain maximum performance regardless of priority assignment. Subsection
1v.4.2 is dedicated to investigate a graph with iterative loops. The same
data are obtained as in Subsection IV.4.1. Subsection IV.4.3 presents two

performance factors based upon TBOLB and TBIOLB.

v.2 Graphs With Parallel Paths

Graphs with parallel paths are important due to the possibility of high
concurrency in the execution of tasks. Fig. 26 presents an example of a graph
with three parallel paths. This example is used to illustrate the calculation
of TBOLp and TBIOLB.

The first step to calculate TBOLB and TBIOLB is to choose a Node Marked
Graph. The Single-Node model is selected because the resulting CMG 1is dead-
lock free. The second step is to obtain the CMG for the given graph. This is
shown in Fig. 27. The third step is to obtain the circuit that takes the
longest time to execute in order to obtain and get TBOLB. Fig. 28 shows the
circuit with the longest time per token. TBOLB is equal to 1065 time units.

As the fourth step, the path from the input to the output of the graph with

47

the longest time has to be located. This is shown in Fig. 29. This time is
TBIOp and is equal to 2240 time units. The fifth step is to calculate the
data injection rate which is controlled by the input source node. The time
that has to be associated with this node is equal to the inverse of the input
injection rate. To obtain the effective input rate to the graph, it is neces-
sary to consider the input read time of the input node. The source node will
fire when a token is placed at its control edge. This is done when the input
read time of the input node is over. Therefore, the source node write time is

equal to

Write time = TBO;p - Input read time (Input Node).

The effective input rate to the graph is

IR = 1/(TBOyp - tIN1)

where IR is the input rate, and tIN1 is the input read time of node 1. Since

TBOLp is 1065 and Iyj is 140, the source node write time is 925,

v.2.1 Simulation

The simulation is performed with the calculated data for all possible
number of resources. The simulation is executed for one resource, two
resources and so on, up to seven resources. The data is input to the Graph
Simulation/Analyzer by means of a Graph Description and Simulation Control
file. The simulation is stopped when the graph has processed fifteen data

Packets. The GDSC file used to simulate the example is presented in Fig. 30.

48

Average TBO, Average TBIO and the FIPSO files are gathered for every
simulation cycle. Resource Utilization (RU) and maximum number of resources
concurrently used are obtained from these files.

The simulation was also run for another priority assignment. The former
priority assignment tries to output as many data packets as possible; the
latter tries to load the graph to its maximum before an output is written.

The first priority assignment has its highest priorities toward the output of
the graph, i.e., the closer to the output the higher the priority. In this
way, the highest priority in the graph is to process and output data. The
system tries to output data as soon as possible. The second priority assign-
ment tries to input as much data as it can before data is output. The closer

a node is to the input of the graph the higher is its priority.

V.2.2 Analysis of Output Data

The Graph Simulation/Analyzer and Analyzer data are tabulated in Tables 1
and 2. The computing power is about the same for every case since it is the
total computing power required for processing fifteen data packets. The
resource utilization decreases with the increase of number of resources. The
resource utilization is almost the same for one and two resources. For three
and more resources the resource utilization decreases more drastically for a
change of one resource. For every resource added to the system the resource
utilization is reduced by about ten percent.

TBOLB is closely achieved using more than four resources. The small
difference is due to the overhead time introduced by the Graph Manager, or the
Simulation, in the scanning and firing of the nodes of the graph. TBIOLB is
obtained using more than two resources. Again, the difference with respect to

the calculated value is due to the scanning of the graph.

49

This value of TBOLB was obtained for two different priority assignments.
The value of TBOLB is not calculated based on priority assignment but on the
transition times in the circuits of the graph. If it is obtained for a given
number of resources, it should be maintained regardless of the priority
assignment for at least the same number of resources.

The maximum number of resources used concurrently is five. After five
resources there is no effect on adding resources except to lower the resource
utilization. This graph can be executed at its optimum performance with five

resources.

V.2.3 Minimum Number of Resources for Maximum Performance

Two important values are observed in Table 1. These are the minimum
number of resources necessary to obtain TBOyp and the minimum number of
resources necessary to obtain TBIOjp. TBOyp is attained for at least five
resources and TBIO;p is attained for at least three resources. The minimum
number of resources for maximum performance is five since with this number of
resources TBOrp and TBIOjp is obtained. This minimum number of resources
coincides with the maximum concurrency in the graph. This value has been
obtained, by theoretical means, by the ODU research team and has been called
Rmax.

It is important to test if this minimum number of resources is indepen-
dent of priority assignment. The simulation of this graph was run for five
resources and for every possible priority assignment. It turned out that the
maximum performance was obtained for every priority assignment. This test
method is not recommended as a common practice since it requires too many

hours of simulation execution. It was done here as an exercise. It was done

50

to test that this minimum number of resources is independent of priority
assignment for this example.

The minimum number of resources at which the TBIOLB is preserved is not
priority independent. A priority can be found at which, for this number of
resources, TBIO is higher than TBIOLg. Table 3 shows the results for the same
graph with a different priority assignment than the last two. The minimum
number of resources at which TBIOpp is preserved is four instead of three as
in the last two examples of priority assignments.

It should be noted that the first two simulations performed in the graph
did not require more than thirty minutes, making the use of the Graph Simu-
lation/Analyzer and the Analyzer a viable method to evaluate the performance

of a given algorithm graph.

Vv.2.4 Graphs with Iterative loops .

Graphs with iterative loops belong to another class of graphs that is
important to the ongoing research. These kinds of algorithm graphs are found
primarily in applications such as digital signal processing or control sys-
tems, where data from predecessor cycles are needed for computation of a
present data packet. Figure 31 presents an example of a graph with iterative
loops.

The Single-Node model is also used in this example to model the nodes in
the graph. Figure 32 shows the resulting CMG, using the Single-Node model, of
the graph..

The circuit with the longest time per token in the CMG is located in
either of the iterative loops, nodes 2 and 5, or nodes 3 and 6. Since there
is only one token in the circuilt, the value of TBOLp is 960 time units. The

effective write time of the input source is equal to TBOpp less the read time

51

of the input node. The value of the write time of the source node is 890 time
units.

Following the procedure described in Section 2.8, nodes 5 and 6 are
eliminated to calculate TBIOjg. The value of TBIOjp is equal to the sum of
the times from the input source to the output sink. This value is 1600 time

units.

V.2.5 Simulation

The simulation is performed with the calculated data for all possible
numbers of resources. The simulation is executed for one resource, two
resources and so on, up to six resources. The data is input to the Graph
Simulation/Analyzer by means of a Graph Description and Simulation Control
file. The simulation is stopped when the graph has processed fifteen data
packets. The GDSC file used for this example is presented in Fig. 33.

Average TBI, Average TBO, Average TBIO and the FIPSO files are gathered
for every simulation cycle. Resource Utilization (RU) and maximum number of
resources used concurrently are obtained from these files.

The simulation was run for two priority assignments. This difference in

priority assignments was explained in Subsection IV.4.1.1.

V.2.6 Analysis of Output Data

The Graph Simulation/Analyzer and Analyzer data are tabulated in Tables 4
and 5. Rpax 1s equal to three for this graph with iterative loops. Both TBO
and TBIO degrade for numbers of resources less than Ry,x. This is different
from the case of the example of Subsection IV.4.1 in which only TBO degrades
below Ryay (in the mentioned example TBOLB is also attained for one and two

resources below Ry,y). For the first priority assignment TBIOjg is still

52

obtained for two resources, but for the second it degrades. This behavior
indicates that, for this graph, TBIO is priority dependent below Rpax-

There is a difference of ten or eleven time units between ATBI and ATBO
which is not expected since ATBI and ATBO should be equal for the conditions
of the simulation. There is also an increase in the average of TBIO with
respect to ATBIO for two resources in the first priority assignment. A more
detailed observation of the execution in the Analyzer reveals that the differ-
ence between TBO and TBI is being added to TBIO at every data packet. Every
time a data packet is injected in the graph, it takes ten more time units to
arrive to the output than the precedent data packet. This is the reason of
ATBIO to be much higher than expected. The reason of the difference between
ATBI and ATBO can be observed in the Analyzer. The critical circuit, nodes
two and five, takes more time than calculated due to the scanning of the nodes
in the graph. This increase is directly applied to TBO, but TBI continues
being the same that was calculated theoretically.

The source write time was incremented to 900 and the simulation was run
again. The results are as expected: ATBI is 975, ATBO is 975, and ATBIO is
1620 for Rpgax-

The increase in the source write time is an experimental adjustment to
obtain the best possible performance. This yields an expression for a lower

bound TBO adjusted to compensate for system overhead during the execution:

TBOLpA = TBOjp + E

where TBOppp is the adjusted lower bound for TBO, and E is the adjustment

factor obtained from the simulation of the graph, or in the case of a hardware

system, the one obtained by executing the graph.

53

It should be noted that this adjustment factor, E, was not necessary for
the example of Subsection IV.4.1. The two graphs of the examples are from two
different classes of graphs. The graph of Subsection IV.4.1 belongs to a
class that has its input circuit directly "coupled" to the critical circuit
(the circuit with the longest time per token in the CMG). Two circuits are
coupled when they have a transition in common. The graph of this section is
from a class that has its input circuit "uncoupled" from the critical cir-
cuit, i.e., they are connected through other circuits in the graph. The graph
of section 4.1 is not as sensitive to variations in the time of the critical
circuit as the graph of this section. Since this subject is not in the scope
of this thesis, there will be no further analysis of these classes.

Without the help of the Simulation and the Analyzer, this adjustment
could not be made in such a short period of time. These adjustments sometimes
can be predicted, but the Analyzer is a required tool to discover these real-

ization differences in performance.

V.3 Performance Factors

There is a need for an absolute time independent performance factor to
classify the graphs by their performance. The absolute time in a given graph
is not as critical as the relative amount of time each node has with respect
to each other. If each and every transition time in any of the graphs evalu-
ated in this chapter are multiplied by a constant, the resultant graph has the
same critical circuit as the former graph. The difference is in the absolute
value of the computations. If the appropriate injection rate is applied at

the input, the same resource utilization is obtained.

54

The TBO performance factor (PFTBO) is obtained by

TBOLB
TBOp

PFTRO =

where TBOy is the measured TBO of the system.
The TBIO performance factor (PFTRI0) is obtained by

TBIOLB
TBIOg

PFTRIO =

where TBIOy is the measured TBIO of the system.
It should be noted that the maximum possible value of these factors is
1.0. The value of the performance factors for the graphs of Sections 4.1 and

4.2 are presented in the Tables 6 and 7, respectively.

55

VI.0O FURTHER RESEARCH

During the grant period,the ATAMM model was used as the basis for deter-
mining analytically bounds for task computational time and system throughput.
An operating strategy which achieves optimum time performance was developed.
In addition, a new diagnostic tool was developed with which to evaluate per-
formance and functional unit behavior. The diagnostic tool provided moni-
toring of detailed system operations and the displaying of global system
performance indicators and measures.

Continuation of the present effort includes the development of a new
multicomputer test bed. The operating system and communication processes are
to obey the ATAMM model and to exhibit a completely distributed graph manager
operating system. The operating system is to allow for continuously assigned
functional units. This system is to be composed of personal computers com-
municating over a local area network.

The ongoing research has established ATAMM as a viable basis for the
specification of data flow multicomputer systems. Further research should
proceed in several directions. An outline of these activities is presented
below.

1. Fault Tolerance. Due to the inherent nature of the ATAMM model to
allow continuous assignment of the functional units, the soft-fail
nature of an ATAMM defined multicomputer system is evident in terms
of hardware failure. That is, the algorithm may be expected to
continue executing, though with degraded performance, with elimi-
nation of functional resources. However, additional effort needs to
be directed towards recovery strategies associated with error in the

data. One applicable method is triple modular redundancy (TMR),

56

which involves the triplication of the node processes and majority
voting. The TMR strategy needs to be investigated with respect to
both performance and the preservation of the ATAMM model.

An important part of the ATAMM research program is to enhance the
understanding of the relationship between performance measures such
as TBIO, TBO, and TT with respect to the algorithm graph character-
istics and the availability of functional resources. On the basis
of recent observations, research is to be directed toward the
improvement of the performance measures as a result of modifying the
algorithm graph by the addition of nonexecutable features such as
control edges and "dummy" nodes. Present investigations suggest
that these graph augmentations may alter and improve certain aspects
of performance without changing the underlying algorithm.

Overhead. Research should be continued toward the refinement of the
node marked graph (NMG) representation. This refinement should
better model the time associated with communication overhead and
other system overhead in relation to node process time. A goal of
this modeling would be to determine limits on algorithm decompo-
sition in view of graph complexity and increased communication
overhead.

Advanced Hardware. An appropriate step in the ATAMM development is
the infusion of the processing rules to advanced technology multi-
computer hardware for avionic or space-bourne applications. An
appropriate environment would include VHSIC technology such as the
MIL-STD-1750A processor as the processing element.

Theoretical Advancements. So far the ATAMM model has been used

57

under somewhat restricted conditions. Further research should
include such issues as multiple graphs, nonhomogeneous functional

units, reliability, fault recovery strategies, and system archi-

tecture which takes advantage of the ATAMM model.

58

10.

11.

12.

13.

VII. REFERENCES

p. Treleaven, D. Brownbridge and R. Hopkins. "pata-driven and demand-
driven compute architectures," Computing Surveys, vol. 14, pp. 93-143,
March 1982.

y. Srini, "An architectural comparison of dataflow systems," Computer,
pp. 6888, March 1986.

W. Rheinbolt, "Report of the panel on future directions in computa-
tional mathematics, algorithms, and scientific software,” Sponsored by
NSF Grant DMS-85-3483, SIAM, 1985.

T. Longo, G. Herzog and D. Maxwell, "A fast single chip 1750A CPU and
compatible support components in VHSIC-size CMOS technology," Proceed-
ings of the Government Microcircuit Applications Conference, pp. 317-
320, 1986.

W. Wehner, W. Everhart, S. Shankar and K. Stalsberg, "A VSHIC archi-
tecture for highly parallel image understanding,” Proceedings of the
Government Microcircuit Applications Conference, pp. 117-120, November
1986. ‘

M. Sowa and T. Murata, "A data flow computer architecture with program
and token memories,” 1EEE Transactions on Computers, vol. 31, pp. 820-
824, September 1982.

K. Kavi, B. Buckles and U. Narayan Bhat, "A formal definition of data
flow graph models," IEEE Transactions on Computers, vol. 35, pp. 940-
948, November 1986.

M. Granski, I. Koren and G. Silberman, "The effect of operation sched-
uling on the performance of a data flow computer,” IEEE Transactions on
Computers, vol. 36, pp. 1019-1029, September 1987.

L. Jamieson, H. Siegel, E. Delp and A. Whinston, "The mapping of
parallel algorithms to reconfigurable parallel architectures," Proceed-
ings of Future Directions in Computer Architecture and Software," D.
Agrawal Ed., ARO Contract DAAG29-8-D-0100, pp. 147-154, May 1986.

J. Peterson, Petri Net Theory and the Modeling of Systems, Englewood
Cliffs, N.J.: Prentice-Hall, 1981l.

T. Murata, "Circuit theoretic analysis and synthesis of marked graphs,"
IEEE Transactions on Circuits and Systems, vol. CAS-24, vol. 7, pp.
400-405, July 1977.

T. Murata, "Modeling and analysis of concurrent systems," Handbook of

Software Engineering, C. Vick and C. Ramamoorthy Editors, Pp. 39-63,

Van Nostrand Reinhold, 1984.

S. Seshu, and M. Reed, Linear Graphs and Electrical Networks, Addison-
Wesley Publishing Co., Inc., 1961.

59

14,

15.

16.

17.

18.

19.

20.

21.

J. Sifakis, "Performance evaluation of systems using nets," Net Theor
and Applications, W. Brauer Editor, pp. 307-319, Springer-Verlag, 1979.

C. Ramamoorthy and G. Ho, "Performance evaluation of asynchronous con-
current systems using Petri nets," IEEE Transactions on Software
Engineering, vol. 6, pp. 440-449, September 1980.

T. Murata, "Synthesis of decision-free concurrent systems for
prescribed resources and performance," IEEE Transactions on Software
Engineering, vol. 6, pp. 525-530, November 1980.

J. W. Stoughton and R. R. Mielke, "Strategies for concurrent processing
of complex algorithms," Proceedings on Future Directions in Computer
Architecture and Software, Army Research Office, Charleston, SC, May
1986.

J. W. Stoughton and R. R. Mielke, "Petri net model for analysis of
concurrently processed complex algorithms," Proceedings of IEEE South-
eastcon 1986, Richmond, VA, March 1986.

J. Stoughton and R. Mielke, "Petri net model for concurrent processing
of complex algorithms," Proceedings of the Government Microcircuit
Applications Conference, San Diego, California, pp. 11-14, November
1986.

T. Murata, "Use of resource-time product concept to derive a perform-
ance measure of timed petri nets," Proceedings of Midwest Symposium on
Circuits and Systems, Vol. 28, pp. 407-410, August 1985,

K. Jackson, R. Tymchyshyn, R. Mielke and J. Stoughton, "Simulation

software for concurrent processing," Proceedings of the IEEE South-
eastcon, Tampa, Florida, pp. 82-86, April 1987.

60

TABLES

ORIGINAL PAGE IS
OF POOR QUALITY

SRAFH wiTH FARALLEL PATHS

FRIORTC A3 GNMENT € 457

FESD_RIES IOMPLTING RESOURCE AVEFAGE LUERAGE MAZIMIM
FOWER JTILZATiON TEC BIC CONCURPENCY
: 4310 CERREN 3430 30350 !
l 3484 37 48% 16276 5800 2
: 43403 Shivies 1207 22650 3
4 4385¢ 58.55% 13 256 4
5 43353 73N W80 13538 5
) 43358 4776 1W0e3 0 1250 p)
h 43378 40335 TRTD 2ieED 5

TABLE 1. Results from first experiment, first priority assignment.

3RAPH WiTH PAPALLEL PATHS. i

FRICRITY AS5!GNMENT 1 272 45

FESSURCESLOMFUTNG PESOUFCE AVERAGE AVERAGE MAXIMUM
FOWER UTUZATION TeD T8I0 CONCURRENCY
1 43218 39115 32430 32350 1
N SIN6R 7 E7% B2 28820 2
3 43409 8C.73% 12349 22650 3
4 43833 53 50% 11380 22850 4
5 50002 57 34% 10830 22650 5
8 80062 47 78% 10830 27880 5
7 £3002 40 3€% 18 22650 5

TABLE 2. Results from first experiment, second priority assignment.

62

ORIGINAL PAGE iS
OF POOR QUALITY

3RAFH Witk FARALLEL FATHS

FRICAITT ASSIGNMENT 1725348

RESOUARCES COMFFUTING RESOURCE AVERAGE AVERAGE MAIMUM
EIWER LTUZATION TBO TBI0Q CONCURREMCY
1 49318 3114 w40 58280 1
2 £508! 7N 18220 32430 2
3 4351 R0.7Z% 13240 27468 3
4 44292 82.56% 1o 22730 4
H 43999 LR A 1er0 22730 5
£ 43939 47.78% 10820 22739 5
h 43353 40974 10830 22730 5

TABLE 3. Results from first experiment, third priority assignment.

63

ORIGINAL PAGE IS
OF POOR QUALITY

SRAPH i [TERATIVE LOCPS

FRICRT 43014873

FESOURCES TOMRUTING RESDIUIRCE AJVERAGE AVERAGE AVERAGE P8 SIMLiM
FIWER JTLZeTION H= T80 TRIG CONCJPFENCY
! 37814 39185 5340 53406 REERE 1
2 22871 §7 4% 12340 13019 16140 N
2 2921 2581 340 3782 16798 3
4 KLIAR] 64 20% 9540 3780 16753 3
5 o 51 38% 354 LRt 6730 3
) /o 42.80% 36473 a78.0 18790 3

Table 4. Results from second experiment, first priority assignment.

GRAPH WITH ITERATIVE LOOFS

FRICRITY 56124

PESIIURZES COMPUTING RESOURCE AVEPAGE AVERAGE AVEPAGE MAXIMLIM
POWER LTILZATICM e TBO TBIQ CONCURRENCY
! 4126 35 16% 25940 5944 58300 1
2 39319 7.54% 12940 13003 1387 9 2
3 3928 8% 97% 961) 70 16715 2
4 29281 A4 435 W1 8712 16718 2
& 23t 51 885 SR §1 e 16713 3
S 33231 47.38% 315 ER R 18715 3

Table 5, Results from second experiment, second priority assignment.

64

FERFOAMANDE FAZTORS PO ZPAPH ‘wTH FARALLEL PATHS

Rezources

1

N

<

8
Table 6.

SERFORMANCE FACTIRS FOR 3RAFH wiTH TERATIVE LOGPS

Pesources

Py

"
-
4
v
4
5
[
v

Table 7.

PHBo
0 328394
0 654572
0 314843
5 937500
G AgIITe

B -

Performance factors

PFBO
0370084
0 737893
0 954615
0 98461%
0 384815
0 934615

Performance factors for gr

Qe 2
Pt TP IR

Gr

S T LS T

PFBI0

§ 632426
0 867544
0 983962
0 338362
0 382982
2 333362

PFreI0
0 517999
0.991225
0 987654
0987654

9387554

65

[

for graph of Section 4.1.

aph of Section 4.2.

FIGURES

L9

A*()

Figure 1. Algorithm marked graph for discrete system equation.

NMG EDGE LABELS

| F Input Buffer Full

IE Input Buffer Empty
DR Data Read

PC Process Complete
PR Process Ready

OE Output Buffer Empty
OF Output Buffer Full

Figure 2. ATAMM node marked graph model.

68

OE

OF

‘uo1}onba wa}sks 2}aJdsip o} japow ydosb paxsow jpuoi}ojndwod WYLV '€ aunbiy

{)aV
a J(d YoM
Og Wl 3)= M)=—(d }={ ¥ M)={d y={¥ 's
o - —o-

(12D ()+0) ()+8

69

COMPUTING

ENVIRONMENT

ALGORITHM

DIRECTED
GRAPH

NODE

ALGORITHM
MARKED MARKED
GRAPH GRAPH

COMPUTATIONAL
MARKED GRAPH

Figure 4. ATAMM model components.

70

Figure 5. Modified algorithm graph tor Figure 1.

71

Problem CMG S0

Control

Figure 6. Operating strategy implementation.

72

€L

Figure 7. Algorithm graph for

design example.

Figure 8. Computational marked graph for design example.

6
7
e
T T S A
7
L o
4—-—6——’

—3 Time

Figure 9. Graph play with TBO=3 and unlimited

functionatl units.

75

Resources

1 L 1 i L i - Time

Figure 10. Resource utilization envelope

for design example.

76

5.
7
P
1 ‘2‘3 A _:'.i.

P

7

<

—3 Time

Figure 11. Graph play with T

77

BO=4 and no control edges.

1'2 3 4 56 78 9101112131415

L 1 1 4 { ! | 1 1 i i 1 1 |

l""Time
@1113211
@ 111 1 312 1 1
@ 11 1 3 21 1
R —p 325
T T T T T T T T T T T 1T Time

12 3 4 56 7 8 9101112131415

Figure 12. Resource envelope overlay diagram with TBO=3.

78

RN T SN Y TN T N S S VA Y Y TP S
@11111133221111
1 1 1.1 1 1 3|3 2 2
R —p & 33 22 2.
T T T 1 T T T T T T 1T T 1™ Time

Figure 13. Resource envelope overlay diagram with TB0=3.5.

79

012 34 567 88%10Mn

L i L i [} 1 { 1 1)| 1 .
» Time

R=Pp 3 223

T T T T T T T Time
01 2 345 67 8 9101

Figure 14. Resource envelope overlay diagram with

TB80=4.0.

80

94----------"-"°"°"°=°°°7° "R=1

2 :

.- :

7 1 '|

i [- |

6 ‘|R-2 |

- | !

3 ! i

L 4--=-----~----"° 4R=3 '

————————————— HR=4 !

T80 g3 T R:=S !

- I |

2 | |

- | |

1 | 1
—T T T 1 — } —>» 1810

1 2 3 & 5 6 7 8 10

T8I0 LB

Figure 15. Example algorithm graph performance

analysis summary.

81

3AVH3dO mNMMWm

‘WHLI1Y09TV ITdWVX3I ¥O3 NI9¥VW 3IONVWHO4Y¥3d 9T 3inol4

S$10880201d 3O "ON

ol e e L o . S L4 € 4 S

—_ - == n —---

| o
1o
l gu-
| oz
| g2-
! oe-
L se
| ow-

1°h &

(syun Aieniqiy) ndybnoiyl

82

-weybetp Y201q adA30304d 71 aJdnbBr4

AHOW3W
vg0719

~

1

€4 NNd

c# Nnd T# N4

HIOVNVR
HdvH9

1X/3d W8l

83

%8

GRAPH MANAGER

Assign Task l*

* Ack. Input
Enable OQutput ¥

* Ack. Output

Request Input l*
* Send Input
Send Output

* Ack. OQutput

FUNCTIONAL UNIT

GLOBAL MEMORY

Figure 1s. Prototype communications dialog.

FIPSQ file

T.72.N 1L F
T8N
T.243 NP
T,250N1.8
T,276,N,1,0
T.278.N.2.F.2
T,322.N.24
T.323NLF3
7,37 N1}
T,456.N.2.P
T,456,N,2.5
T,482N.20
T7,485.N.3.F.4
T,500,N.1.P
7,501 N1.8
7,527.N.1.0
T.661.N,3.
T.663N.2.F.5
1,707 N.2)
1,708 N 1LF
T,752.N,1.1
T,340,N,2,P
T,841 N.2.S
T867.N.2.0
7,885.N1.P
T,886,N,1.S
791210
T,190,N.3.P
TA19IN3S
T,1295.N.3.0

at time 72 and assigned to FUl

input places at time 116
the process at time 248

got clearance to output data at time
wrote the output data at time 276

at time 278 and assigned to
input places at time 322

at time 323 and assigned to
input places at time 387
the process at time 455

got clearance to output data at time
wrote the output data at time 482

at time 485 and assigned to
the process at time 500

got clearance to output data at time
wrote the output data at time 527

input places at time 661
at time 663 and assigned to
input places at time 707
at time 708 and assigned to
input places at time 752
the process at time 840

got clearance to output data at time
wrote the output data at time 887

got clearance to

the process at time 885
output data at time

wrote the output places at time 912

the process at time 1190

3 got clearance to output data at time
3 wrote the output places at time 1295

Word d s
¢<-- Node 1 is fired
<-~ Node 1 read the
¢-- Node 1 finished
¢<-- Node 1

¢-- Node 1

<-- Node 2 is fired
<-- Node 2 read the
¢<-- Node 1 1is fired
<-- Node 1 read the
<-- Node 2 finished
<-- Node 2

<-- Node 2

¢-- Node 3 is fired
¢<-- Node 1 finished
¢<-- Node 1

<-- Node 1

<—- Node 3 read the
¢<-- Node 2 is fired
<-- Node 2 read the
<-- Node 1 is fired
¢-- Node 1 read the
¢-- Node 2 finished
¢-- Node 2

<-- Node 2

¢<-- Node 1 finished
<-- Node 1

<-- Node 1

¢-- Node 3 finished
<-- Node

«-- Node

Figure 19.

85

A sample FIPSO file.

250
FU2

FUu3

456
Fu4

501

FUS

FU1l

841

886

1181

98

£) T

=
= TBIO
Concurrent F—EZLJ__,T—'
& Entnnniwny
s,'t‘m o
i, ' | ATBO
_E': ' 11| ABTIO
Ell T
N luullumu_i_
”” E= - ’] Comparison
E\:[rf for change
E - of parameters
nuuunuu_.l_

Generation of Data

@m , - __J

System
Simulation

Figure 20. Analyzer information flow.

11ER4 NODE ACTIVITY DISPLAY heE -1IE
- ‘ i 8
[

pssigned FU's
Input/Output
Yoggle displays
Split cursor
Merge Ccursors
Factor(cursor)
Def ine window
i Restore window
Node Statistics
Concurrency
Quit

G

SRS L DEPTMH [1]

CURSOR X { TIME NI Musber of events: 543 Execution time: 17436

Figure 21. Analyzer Node Activity Display.

87

ITER4 FU ACTIVITY DISPLAY e &1

| - 1 a
il HItIY T T QSSIQT“ 's
S 11z fh [
A gl Bl o It
RN L THIHIS (il Toggle displays
Split cursor
Nerge cursors
i gL Ernmn g il gl 3 Factor(cursor)
i ’ny ‘Jh i 4 HHHZRE (i : :
' i gid '!,j,g i | f ” 1 4l Define window
Restore window
t
Node Statistics
| [TETm g | Comreny
1 - Quit
e i H'”h; | |
!f! :s!' s.f’{ {‘:' H!I’ ”““ ! ik .

TRz =21 ST

i 2l m} |
— Bl : == DEPTH [1]
Nunber of events: 543 Execution time: 17436

Figure 22. Analyzer Functional Unit Display.

88

ORIGINAL PAGE IS

OF POOR QUALITY

l

‘i
L
b

/

ij

[TER4 INPUT/QUTPUT DISPLAY me 1
— S | B
| el TRO TBIO |

A 1 &< R 1 assigned FU's
b 20 1867 1867 zn 'l Input/Output
13 1899 1899 2273 | toggle displays
| "q: 1867 1067 2273 | spiit cursor

{ . 1999 1899 2273 ‘ Merge cursors

' g 1067 1867 2273 " Factor (cursor}
L 70 1899 1899 273 | Define window

| 8: 1967 1867 2273 | Restore vindov
. 9 1899 1699 ZZT3 | Node Statistics
18, 1667 1867 2273 | Concurrency

| 11:1899 1099 e Qit

12 H% 1967 273 -

|13 1699 1699 2203

| 141 1867 1867 213

|15 1999 1899 273

|
|
|
|
|
\
|

oMt

CURSOR X 1 TIME WNITS

Figure 23.

Nusber of events: 543 Execution time: 17436

Analyzer Input/Output Display.

89

ORIGINAL PAGE IS
OF POOR QUALITY

ITER4 CONCURRENCY DISPLAY e 5
1 8

COMPUTING POWER: 1689281 COMP-SECS

Assigned FJ's

| Input/Output
; 2 Toggle displays
| .fg Split cursor
| 2 Nerge cursors
f b Factor (cursor)
‘ : Define window
: Restore window
- 4 Node Statistics
a2 % Concurrency

! 1% Quit

741 | statistics

VX7 | conctmepey
1 e
'S = 2.7
2-RU'S - 48,
LR s
BRUS - 7,

11}
i
-
-

. s sy

TR

K S

'
[0

21 lE,

iE

A

wildd DEPM [1)
943 Execution time: 1743%

CURSOR X 1 TINE UNITS

Figure 24, Analyzer Concurrency Display.

90 C‘&

16

Graph Description &
Simulation Control File

e
|

L —

MS-DOS
Personal
Computer

Flles:

—ATBIO

~ATBL

—ATBO

~Timed events
~Concurrency
—etc,\.

Figure 25. Graph Simulation/Analyzer information flow.

For Visual Analyzer

VAN

NZ

I

|

g

L

-

26

] = 320
-read 70 read 140
process 210 process 420
write 40 write 0

Figure 26. Graph with parallel paths.

€6

|' — 'I
% S 7 o 7K o o) e oy
\ Sh," "

Sy NS/ S/ A\ /

Figure 27. CMG using Single Node model.

%6

I -+ NN - o - PN . e

== \Qy\-y'«ey =D

Figure 28. Circuit to obtain TBO LB

G6

’d

mmpﬁmp,m.m»‘,m‘

S,

Figure 29. Path to obtain TBIO 1B"

ORIGINAL PAGE IS
OF POOR QUALITY

MR S mulanon of 3 3raph % parailel Daths WX
NNz amiated wab full rar ge ot resdyrces NER
HNNR and wah two difterent oronty as3Ignments NXN

Sraph Graph with parallel paths T8O g = 1185 TRID g = 2240
Nodes T
Sourzes !
Sirhe 1
Flages 10
resources -3 ®OENN Cropp bt 7 resources XM
Fromy 5437081 BAmemate assianment 1827 345

Data 3 alable at the input node

The mput node is node 1
Cuput $ # The output nooe 1s node 5
Times H Global ame assigrimerit
Reag 7™ # Thece ume2 assignments are for al
Process 10 # rivdes in the graph. They can be
wre 4 # ouerndcan later on.

Node 1

nguts 1

Oueus 27

Time W Local ume assigr.ment
Reaa 140 ®# Thase ime 35signments overnde
Frocess 420 8 the JiCCa ume assignments
wre 30 "

Naoge 2
npus &
Dutouts 2 3

Node 2
Irputs 3
Cuputs 4

Node 4

Inputs 410
Outputs §

Figure 30. Graph Description and Simulation Control file
used for the first experiment.

96

CRIGINAL PALT i5
OF POOR QUALITY

Time W Locai urme agsignment
Pead 14] # Thegs 1me assIgNments avernde
Frocess 4iC Hthe giobal UMe assignMents
wrte 80

Mage §
rputs 5 3

Supas §

Mode &

Inputs 7

Suputs 8

Time # Local me assignment
Read ‘40 # These tme assignments overnde
Process 420 # the globai ime assignments
wrme 80 L

Node ?
Inputs 9
Jupue !t

Source 1
Qutpusts 1
Time
Wwrite 325 W Source output wrie ime is TBO, g - IN1
H Write tme = 1065 - 140
Sink 2
npLt: S
Time
204 70

End # This ends the Graph Cescripton File

Figure 30. (Continuation).

97

86

Source

BJ Sink

] = 320

read 70 read 140
process 210 process 420
write 40 write 80
Figure 31.

Graph with iterative loops.

66

Figure 32.

CMG of the graph' in Figure 31 using
Single Node Model.

ORIGINAL PAGE IS
OF POOR QUALITY

W EAE Simuiation of a graph with terative icops NN
BUNR s simolated with U ranige of resources MR
R ERR omd with two afferent priority assignments MMN

iaraph Grach wah terative locps TBOIGLE) = 960 TE!GIGLB) = 1800
Hodes §
Sour:e:s 1
Sinks 1
Fiaces 3
Resources -1 H MR From 110 6 resources MaR
Promrs 432168 4 Alternate assignment SR 127 4
Tokenz 179 # Data avatable at the input node
H and in outputs of the rterative locps
Model Single

Inpist 1 # The input node is nade 1

Cutoit 4 # The cutbut node is node 4

Trmes # Global ime assignment
Read 70 H These time assignments are for all
Procesz 210 # nades in the graph. They can be
wWre 4 # overndden later on.

Node 1

‘nputs)

Cutpuns 2
Node 2
Inpine 27
Oupus 36
Node 3

inputs 293
Cuputs 43

Figure 33. Graph Description File for the second experiment.

100

GRIGINAL FAET 1S
OF POOR QUALITY

Time % Local nme a3319nment
Feag 140 Thase ime as5:3rments avernde
Process 420 # %o glchbal uma aszignments
wree B0]
MNode 4
‘npiss 4
Qupate ©
Node 5
'nEute B
QUG 7
Time H Locai ime assignment
Read 140 # These 1me assignments overnde
Process 420 # the global ume assignments
wre 90 #
Node b
rpits 8
Ouputs 9
Source !
Dutputs 1
Time
‘wrne 290 # Source ouUtDut write ime s TRO(LB! - N1
'wre nme = 30~ 70
Sink 2
nows &
Time
Read 70
€rnd # This ends the Graph Cescripion File

Figure 33. (Continuation).

101

APPENDIX A

THE ATAMM PROCEDURE MODEL FOR CURRENT PROCESSING OF
LARGE GRAINED CONTROL AND SIGNAL PROCESSING ALGORITHMS

Presented at

National Aerospace and Electronics Conference
Dayton, Ohio

May 1988

ORIGINAL PAGE IS
OF POOR QUALITY

THE ATAMM PROCEDURE MODEL FOR CONCURRENT PROCESSING OF LARGE

GRAINED CONTROL AND SIG

NAL PROCESSING ALGORITHMS

John W. Stoughton and Roland R. Mielke
Department of Electrical and Computer Engineering
0Old Dominion University

ADSTRACT

An overview is presented of a model for
Jesctibing data and control flow associated with the
exceation of large grained. decision free algorithms in
a special distnibuted computer environment.
ldentitied by the acronym ATAMM, which represents
Alworthim—Lo—Architecture Mapping Model, the
nodet provides a basis for relating an algorithm to its
execwtion in a dataflow multicomputer environment.
the ATAMM model features a marked graph Petri
et deseription of the algorithm behavior with regard
to hoth data and control flow. The model provides an
analvtical basis for calculating performance hounds on
U iiput characteristics which are demonstrated in the
[rsbreer,

INTRODUCTION

[he development of new computer architectures
Lo~ npon diztributed. multiprocessor organizations
t 21 motivated mainly by the requirement for
Ganmised speeu and greater throughput capability in
complex sienal processing applications {3]. With the
sdvent of hizhi—Jensity microelectronics the construction
ol savallel architectures consisting of identical, special
amreose computing elements is now a reality [4L{3}. A
sumner o8 models for describing the havior of
leorithits i this settina have been developed [6]—8).
However, these madels represent only the dara flow and
Sy aot adequately display the complex issues of
corantceation and controi flow which must occur in any
woniation. Ulus, it has been difficult 1o investigare how
ro ctlecnively ateh the decomposition and scheduling of
swonithms to the stencture and control of parallel
Seniectures. The imporrance of better understanding
ihe relationship between algorithms and architectures is
uliy tow necoming recognized (9]

Tlis paper preents an overview of a graph
“hearetic model for describing both data and control flow
wssociated with the concurrent processing of large grained
Cleortthing ina speeial distributed computer environ—
went. s maodel is identified by the acronym ATAMM
-.\vhiclll represents Alzonithim Lo Architecture Mapping
Sovjel

The purpose of the ATAMM model ig important
fov liree reasons. First, the model provides a hardware
calependent context in which to investizate the refative
aeits ol different algorithm decumposition and
Lolementation stratemics. Second. the madel defines the
i Tow and control flow which must be manifested by
wiv dataflow computer architecture implementing the
decomposed alzorithm. Third. the modcl provides an
anaivtical basis for performance cvaluation.

The problem domain of the ATAMM model
consists of large—grained, decision—rce algorithms with
comnputationally complex primitive operations which are
assumed to be implemented in a dedicated distributed
dataflow environment. The algorithms are such as may
be found in (but not limited to) large scale signal
processing and control applications. A potential
multicomputer environment might consist of two to

twenty processing elements composed of VHSIC
technology.
TAM 0 P 0

The composition of the algorithms of interest may
be such that two or more operations can be performed
concurrently. Thus, the potential exists for decreasing
the computational time required to executing the
alzoritlun by increasing the computational resources
which process the large grained primitive operations.

The hardware environment (Figure 1} for
exceuting the decomposed algorthms is assumed ‘0
consist of R identical processors or functional units
(FUNs) wiiere R has a value in the range of two 10
twenty. ‘This range of resources is suggested for practical
reasons due to the large—grained aspect of the algorithm
decomposition and the need to maintain small communi—
cation times relative to process times. Each FUN is a
processor having local memory for program storage and
temporary input and output data containers. Each FUN
can exccute any algorithm primitive operation. The
11"\ <hiare a common global memory (GLM) which may
he cither centralized or distribuzed. The coordiration of
FUNs in relation to data and control flow is dirccted by
the sraph manager (GRM). The GRM also may be
centratized or distributed. Transaction rules provide that
onti.ut created by the completion of a primitive operation
is niaced into global memory only after the output data
containers have been emptied. That is. outputs must be
consumed as iuputs to successor primitive operations
hefore allowing new data to fill the output locations.
Assienment of a functional unit to a specific algorithm
prinutive operation is made by the GRM only when all
inputs required by the operation are available in global
memory and a functional unit is available.

‘[Le algorithm to be erecuted has its data flow
represented in a directed graph termed the aleorithin
directed graph (ADG). The ADG provides a descript:on
of the operand data flow and operation sequence required
by the alzorithm decomposition. Vertices of the ADG
are in a one—to—one correspondence with each occurrence
of a primitive operation. The ADG contains an edee (i}
dirccted from vertex i to vertex j if the output of
primitive operation i is an input operand for pnimitive
operation j. When constructing an algorithm graph.

ORIGINAL PAGE IS
OF POOR QUALITY

ices or nodes %primitive operations) are displaved as
es. and edges (input—output signals) are displayed as
ited line segments connecting appropriate vertices.
-ces and sinks for input and output signals are
esented as squares. Sources from constants are not
dly included in the algorithm graph: however,
1gles are used for this purpose when necessary.

To illustrate, consider the computations for the
2 equation

x(k) = Axtk—1) + Bu(k)
output equation
y(k) = Cx(k)

re x is a p—vector, u is an m—vector. y is an r—vector,
A and B are constant matrices. The primitive
‘ations are defined as matrix multiplication and
or addition. The algorithm dirccted graph for this
rithm decomposition is shown in Figure 2. Note that
1 edge is labeled with the corresponding operands and
nodes are labeled to indicate the associated
putational operation.
Petri—nets have heen established as an approp—
> model for describing systems dcfined by some
ience of events. Without argument. the algorithm
wed graph satisfies this general aspect. Further.
e computers need to communicate and be controlled
the occurrence of certain events, the Petri—net
yimes a suitadble theoretical vehicle for the ATAMM
lel. Certain physical characteristics of the class of
lems under consideration lead to a simplified Petri—
representation. (For a formal description of Petri—
features. the reader is referred to reterences {10-12).)
Considering the data flow in an alzorithin directed
sh. the execution of a primitive operation is precon—
med on the availability of input signais (or
-ands). This process may be directly modeled by a
q—net "transition” which is "cnabled" for “firing”
n input “places" o the transition are marked with
cns”. Because the signal or data availability is a
1y condition. it is appropriate that the tokens are
ted 10 the set {0.1} in order to associate places
dditions) to transactiors (events) in a binary way. A
t=nct having such restricted input and output
tions is called an ordinary Petri—-net. 'ic
rpretation of places in the system model developed
- is the availability of a signal. That is, the absence
tolen indicates the absence of a data signal. and the
ence of a token indicates the availability of a data
al. Petri—nets having such restricted markings are
«l safe or one—bounded Petri—ncts. Finaily, the
inption is inade that the algorithms under considera—
contain no conflict or decision making such as
then—else” or “do—while” statements. thus limitine
Petri—net phwees to laving one input transition and
output transition. This class of restricted Petri-nets
lled marked grapls. Ticrefore. the Petri-nets used
2is report are ordinary, saie marked graphs.
Limiting the model for consideration of decision—
alzorithms is made because the resulting marked
'h models arc bLetter understood than general
ri-nets and hold the potential for the development of
‘ormance bounds for concurrent processing strategics.
An aleorithin marked araph (AMG) is A marked
»h which represents a specific algoritim decomposi—
v and is identical in topology to the curresponding
writhm directed graph. The AMUG represents the first

component in the development of the ATAMM model.
The construction rules and symbols are the same as the
ADG except that the edges are marked with tokens to
tcpresent the availability of data. That is, edge (i.j) is
marked with a token if an output {rom primitive operator
i is available as an input to primitive operator j. The
presence of a token on an edge is indicated by a solid dot
placed on the edge. The vertices correspond to
transitions which may fire after being enabled by the
availability of all input data tokens. The decomposed
state equation represented in Figure 2 is also used to
illustrate the AMG. It should be noted that the initial
conditions for the recursion are represented by tokens on
the loop edges.

The AMG is a useful tool for representing decom—
posed algorithms and for displaying data flow within an
algorithm. However, the AMG does not identify proce—
dures that a computing structure must manifest in order
to perform the computing task.

Algorithm requirements and the computing
environment may now be integrated into a comprehen—
sive Petri—net model to complete the ATAMM model.
The model consists of a Petri—net marked graph called
the computational marked graph (CMG). The CMG
displays the data flow and control flow required to
implement & decomposed algorithm in a multiprocessor
data flow computer architecture. Before defining this
model, it is helpful to define an intermediate graph calied
the node marked graph (NMG), [13].

A NMG is a Petri—net representation of the
computing behavior of a FUN for each AMG operation.
Three primary activities. reading of input data [rom
slobal memory, processing of input data to compute an
output. and writing of output data to global memory. are
represented as transitions (vertices) in the NMG. Data
and control flow paths are represented as places (edges),
and the presence of signals is notated by tokens marking
appropriate edges. The conditions for firing the process
and write transitions of the NMG are as defined for a
gencral Petri-net. while the read transition has one
additional condition for firing. In addition to having a
token present on each incoming signal edge, a functional
unit must be available for assignment to the primitive
operation hefore the read node can fire. Once assigned.
the functional unit is used to. implement the read.
process. and write operations before being returned to a
qucue of available FUNs,

The NMG of iaterest in this paper requires control
signals indicating that empty data containers are
available to receive new output as input edges to the read
transition. Therefore, initiation of the node operation
requires not only the availability of input data and a
{unctional unit. but also the availahility of empty output
data containers in global memory. This model is shown
in Figure 4.

A computational marked graph (CMG) s
constrneted from A particular AMG and the NMG
according to the following rules.

1. Source and sink nodes in the AMG are repro—
sented by source and sink nodes in the CMG.

2. Nodes corresponding to primitive operations in
the AMG are represented by NMGs in the CMG.,

3. Edges in the AMG are reprcsented hv cdge
pairs. one forward directed for data flow and one
hackward directed for control flow. in the CMG.

The play of the CMG proeeeds according to the
followine granh rules.

1. A node is cnabled when ail incoming edges are
matked with a token. An enabled node fires by encum—

A-3

. 3

bering one token from each incoming edge, delaying for ,
some specified transition time, and then depositing one
token on cach outgoing edge.

2. A source node and a sink node fire when
enabled without regard for the availability of a FUN.

3. A node operation is initiated when the read
node of an NMG is enabled and when a FUN i3 available
for assignment to the NMG and thus fires the read node.
A FUN remains assigned to an NMG until completion of
the firing of the write node of the NMG. Supervision
gg\}ogical assignment of the FUN is managed by the

For illustration, the CMG corresponding to the
algorithin graph of Figure 2 is shown in Figure 4. The
CMG is useful because it clearly displays the data and
control flow which must occur in any hardware imple—
mentation of the model process, an because it provides a
hardware independent context in which to evaluate
process performance. !

The ATAMM model consists of the algorithm
marked graph, the node marked graph, and the
computational marked graph, and the data flow
architecture. A pictorial description of the ATAMM
model is shown in Figure 5.

ATAMM MODEL GRAPII CHARACTERISTICS

The theoretical analysis of the CMG from the
standpoint of marked graph theory is bevond the scope of
this paper and may be found in Qﬂ. However, several
properties are noted below for clarity.

Let the CMG be a masrked graph consisting of m
places and n transitions. The m-—vector My s the

marking vector resulting from the firing of some sequence
of k transitions. [t may be shown that the number of
tokens contained in any directed circuit of the CMG is
invariant under transition firings.

The CMG is live for all appropriate initial
marking vectors. That is, for a marking M il, for all
markings reachable from \f, it is possible to fire any
transition of the CMG by progressing through some
transition firing sequence.

The CMG is said to be consistent. That is, there
exists a marking M and a transition firing sequence from
VM back to M such that every transition occurs at least
once. In addition, each transition of G occurs an equal
number of times in a firing scquence from a marking M
back to M. '

The CMG is said to be safe for marking M if, for
all markings reachable from M. no place contains more
than one token.

PERFORMANCE M EASURFS

In this section. performance measures indicating
computing speed and throughput capacity are defined.
Bounds for these quantities are calculatcd analytically
from the AMG and CMG. This information is essential
for efficiently matching algorithm decompositions with
architecture implementations. The work presented in
this section is extension of recent investizations of the
plr.-_rlfurmanco of Petri-nets {15},(16] and marked graphs
|17

Assume that R FUNs are available for the
aleorithm execution. A computational task is initiated
when an input data token from the source node is
encuinbered, Task output occurs when a corrcsponding
autput data token is deposited at the output sink node.

ORIGINAL PAGE IS
OF POOR QUALITY

l

A task is completed when all computing associated with -
the task is completed. However, rask output and task
completion do not always coincide as may be found in
iterative signal processing algorithms in which initial
conditions lor the next lteration may occur after an
output has been calculated. Task completion is usually
indicated in the AMG or the CMG by the return of the
graph to some steady—state initial marking. To facilitate
measurement of throughput capacity, it is assumed that
rasks are initiated periodically with new input data sets.
New data sets are available continuously as input tokens
from the input source oode. Included in this problem
class are iterative algorithms where the present task
requires as inputs data from previous task calculations.
Concurrency, at any instant, falls into one of two
catcgories. On one hand, different functional units
(FUNs) may be performing simultaneously several

primitive operations longing to & particular task within

in the graph. This type of concurrency is referred L0 as
vertical concurrency and has a direct effect on task
computing speed.
primitive operations that ~cn

simultaneously in a gven algorithm decomposition, and
by the number of FUNs available. The second type of
concurrency relates to FUNs which may be operating oo
differcnt input tasks within the graph. This type of
concurrency bas a direct effect on throughput capacity.
It is limited by the capacity of the graph to acco te
additional task inputs, and by the number of functional
units available to implement the tasks. In the following
it is shown that the process of algorithm decomposition
imposes bounds on the amount of vertical concurrency
and horizontal concurrency possible in a given problem.
If sufficient computing resources are available, operation
at these bounds can be achieved. If the number of
computing resources is limited, the bounds can not be
reached simultaneously and trade—offs between the
amount of i concurrency and horizontal

Three performance measures for concurrent
processing are defined. The performance measure B1O
is the computing time which elapses between & task input
and the corresponding wask output. The perf:
measure TT is the computing time which elapses between
a task input and the completion of all computation
associated with that task. The performance measure
TRO is the computing time which elapses between
successive task outputs when the graph is operating
periodically in steady—state. The first two parameters,
TBIO and TT, are indicators of computing speed and
thus reflect the degree of vertical concurrency. The third
parameter, TBO, is a measure of throughput capagty
and thus reflects the degree of horizontal concurrency.
when compared to 1 1.

Lower bounds of these measures may now be
outlined, and may be found in detail in [14]. Consider an
AMG representing 3 decomposed algorithm. The lower
bound for TBIO is the shortest time required for a data
token from the data input source to propagate through
the graph to the data output s.nk. Similarly, the lower
bound for TT is the shortest time required to compiete
all computing activity initiated by the injection of a data
1oken [rom the data input source. These shortest times
arc the actual performance times when only 2 single task
is active in the graph during any time interval {ro
horizontal concurrency), and as many computing
resources as are required are available (maximum vertica
concurrency). Under these operating conditions. lower
bounds for TBIO and TT are calculated by identifying

A-b4

certain longest paths in a graph obtained from the
algorithm marked graph. This new graph. called the
modified algorithm marked graph, MAMG. is defined
and then used to determine lower bounds for TBIO and
TT.

The construction of the modified AMG proceeds
by the following rules. Let p; be a place of of the AMG,
directed from transition t, to transition Lo which

contains a token of the initial marking. Then the
MAG)M may be obtained from the original AMG by
1. Deleting place P from the AMG;

2. Adding place P dirccted from the data input
source to transition t» is added to G:

3. Adding a new output sink 3, different from all
other output sinks. and a new place Py dirccted from
transition t to 5, and

4. Repeating 1-3 for each place of the AMG
containing a token of the initial marking.
Let P, be the ith directed path in the MAMG

from the data input source to the output sink. The lower
hound for TRIO is defined as

’l‘l.ilOLD = Max | 'l‘(l’i) }s
where the maximum is taken over all paths l”i in the
MAGM and T(Pi) denote the sum of transition times for
transitions contained in Pi'

Let Pi be the ith directed path in the MAMG
from the data input source to0 any output sink. The lower
bound for TT is defined as

TTLB = Max { T(Pi) }
wiere T(Pi) denote the sum of transition times of
transitions contained in Pi‘ and the maximum is taken
over all paths Pi in the MAGM.

To illustrate, ’I'BlOLB and TTLB are computed

for the AMG shown in Figure 2 for which the following
iransition times are assumed: T(1)=+. T(2)=1. T(3)=5,
and T(4'=6. The MAMG is shown in Figure 6. It may
he easily shown that TBIOLB=10 and TTLB=11.

A lower bound for the performance measure TBO
'§ now determined from the CMG representing a
cocomposed algorithm. It s assumed that operating
couditions are set to maximize horizontal concurrency.
That is. data tokens are continuously available at the
data input source. and as MANY cComputing resources as
needed can be called to perform primitive operations.
With these conditions. the graph plays periodicaily in
steadv—state. and TBOLB is the shortest time possible

between successive outputs. Lot (Z'i he the ith directed
circuit in the CMG. The notation ’F(Ci) denotes the suin
of transition times of transitions contained in Ci' and
.\I(Ci) denotes the number of tokens contained in C
Then.

TDOLB = Max { T(Ci) / ‘“(Ci) b

where the maxiimum is taken nver all directed circuits in
the CMG. ! o
The CMG in Figure § has many directed circuits.

However. the dirccted circuit which contains all NMG

nodes of transitions 2 and 4 contains only one token and
maximizes the ratio T(Ci) / M(Ci). Therefore, the j

shortest time possible between successive outputs in this
graph is TBOLB=7.

. 0 [¢ A N

Of interest is the development of an operating
strategy for the ATAMM model which achieves optimum
time performance with a minimum number of computing
resources. Unfortunately, this problem is equivalent to a
class of scheduling problems which is known to be
NP—complete. T us, there exists no algorithm for
obtaining an optimum solution which is better than
cnumerating all possible solutions and then choosing the
best one. "However, a suboptimal operating strate:
which achieves optimum time performance, but possibﬁ
requires more than the minimum number of computing
resources, has been developed and is illustrated in this
scction.

When presented with continuously available input
data sets, the natural behavior of a data flow architecture
results in operation where new data sets are accepted as
rapidly as the available resources permit. That is, the
architecture naturally operates at high levels of
hiorizontal concurrency with the possible loss of capability
for achieving high levels of vertical concurrency. This
results in performance characterized by high throughput
rates, TBO=TBOLB, but relatively poor task computing

speed so that ’I‘BIO>>'I‘BIOLB and ’I‘T>>‘I'TLB. In

many signal processing and control applications, it is
important to achieve both high throughput rate and high
task computing speeds. he suboptimal operating
Strategy presented in this section resuits in performance
having the following characteristics.

l. When R>R“u. operation achieves TBIOLB,

TTLB. and TBOLB. R.\ia.x is computed in implement—

ing the stmeg, aod represents the minimum number of
resources which insures maximum horizontal concurrency
and maximum vertical concurrency under this strategy.

2. When RM“>R>R\ﬁn. operation achieves

’I‘BIOLB and TTLB' but TBO>TBOLB. The strategy

preserves task computing speed or vertical concurrency at
the expense of throughput rate or horizontal concurrency.
R\Iin is also computed in implementing the strategy, and

represents the minimum number of resources needed to
maintain vertical concurrency with limited horizontal
concurrency.

3. The rate at which new data is presented to the
CMG must be limited. This is accomplished by adding a
control transition connected in a directed circuit with the
data input source. The control transition imposes a
minmum delay of D time units hetween inputs. Delay D
is choscn according to the following rule:

TBOLB R>R

Max
D= TBOyun Ryppe > R>Ryp
TCE R\lin >R>1.

TCE denotes the total computing effort required to
compicte the task, and TBOMin. Rmx. and R.\!in are

computed as part of the operating strategy design
procedure.

ORIGINAL =enm e

A-5 OF POOR GuUAL:TY

The operating strategy design process consists of
five steps. These steps are presented and cxplained in
the remainder of this section. An operating stratcgy is
developed for the example aigorithm graph shown in
Figure 7 to illustrate each step as it is presented.

Srep 1. Choose a convenient transition firing rule. For
e example algorithm graph, the highest to lowest
priority ordering of the transitions is chosen as
(5.4.3.7.2.6.1\.

Step 2. Determine TBO. g The CMG corresponding to

the example algorithm graph is shown in Figure 8. The
dirccted cireuit idcmi?xea in this figure contains 6
transition time units and 2 tokens., and maximizes the

ratio T(C-l)/.\l(C.l) for all directed circuits. Therclore,

Sien 3. Determine the resource utilization envelope of a
single task required for maximum vertical concurrency at
steady —state with TBO = TBOLB under the assumption

of unlimited resources. The plav of the example
algorithm graph under these conditions is shown in
Figure 9. and the resulting resource utilization envelope
is shown in Fi%ure 10. ‘

Srep 4. Stahilize the resource utilization envelope by
adding control places as neCCSSary. 1f the time hetween

inputs to the CMG is increased above 'l‘BOLB. the

resource utilization envelope may change from that
observed in Step 3. Since knowledge of the envelope is
required to calculate the number of required resources,
additional places are appended to the AMG and the
(MG to {reeze the shape of the envelope. [For example,
the play of the example algorithm graph of Figure 7 with
an injection time of 4 is shown in Fizure il. Al this
dlower iniection rate. transition 6 fires one time unit
earlier. To prevent time movement of transition 6. a
control piace Jirected from transition 2 to transition 6 i8
acded. This place prevents the firing of transition 6 until
transition 2 has completed firing. 'Thus the resource
utilization envelope computed for an input period of
TBO| is the envelope for ali input periods

TBO>TBO g

Srep 3. Compute R.\lax‘ R.\lin' and TB()_“.m(R) using
tlie resource utilization envelope. Rytax is determined
by overlaving resource utilization requirements. each
delaved by TBOLB with respect to the previous nne, as
shown in Figure 12 for the example. Rye.o is cqual o

the largest resource requirement during any time inerval
within the steady state operating period. Ryyin is the

minimun number of rezources necessary o insure
maxinum vertical concurrency with no horizomal
concurrency. This anunher is equal 1o the maxinim
resource reguirement indicated in the resource utilization
envetope for a single task. For the example problem.
R.\ld'\,=5 and R.\lin=3" The value of ‘”“).\Iin for carh

resource munber R between R““ and R\liu inclusive, is

determined by increasing the delay hetween overlapping
cesource utilization envelopes wutih the maxinum
resource requirement is R. TBO\”" i« the smallest input

For the
R=3 are

delay 1o produce this resource requircment.
example, the calculations of TBOyy;p for

CHGINAL pAGE 15
OF POOR QUALITY

illustrated in Figure 13. The results of these calculations
are TBO.\ﬁn(s):"'

The performance degradation as a fuoction of R of
\Le example algorithm graph is summarized in Figure 14
which shows the thruput rate or performance margin as a
function of R. Note that for the example. no
jimprovement in thruput is available for R>Ry,. -

QNC

The ATAMM model has been demonstrated to be
a useful graph theorctic model for describing data and
control flow associated with the execution of large
grained. decision free algorithms in a special distributed
computer environment. The ATAMM model has been
shown to provide an mdiﬁc&l basis for calculatin
performance bounds on thruput characteristics an
suboptimum performance bebavior. The ATAMM model
Jeads directly to the communcation and data flow
specifications for 3 data flow architecture and thus
becomes the basis of design for these structures.

ACKNOWLEDGEMENT

The paper is based on research work which was
supportcd in_part by NASA Langley Research Center
under Grant NAG—1-683.

1. P. Treleaven. D. Brownbridge and R. Hopkins.
"Data—driven and demand—driven computet architec—
t.urqeq." Computing Surveys. vol. 14, pp. 93-143, March
1082,

2. V. Srini, "An architectural comparison of
dataflow systems," Computet, pp- 68—58, March 1986.

3. W. Rheinbolt. "Report of the panel on future
directions in computational mathematics. algorithms.
and scientific software." s by NSF Grant
DMS—33-3483. SIAM, 1983.

1+ T. Longo. G. Herzog and D. Maxwell. "A fast
single chip 1750A CPU and compatible support
components in VHSIC-size CMOS technology.”
Proceedings of the Government Microcircuit Applications
Conference. pp. 317-320. 1986.

5. \.\Vehner, V. Everhart. S. Shankat and
K. Stalsberg, "A VSHIC architecture for highly parallel
imaze understanding,” Proceedings of the Government
\licrocircuit Applications.

6. \M.Sowa and T.Murata. "A data fow
computer architecture with program ané 'oren
memorics." 1EEE T ransactions on Computers. vol. 31.
pp.820-324. September 1982.

<. K. Kavi, B. Buckles and U. Narayan Bhai. ” A
formal definition of data flow graph models.’ IECL
Transactions on Computers. vol. 35. pp. 9404
November 1986.

§. M. Granski, 1. Koren and G. Silberman. “The
cffect of operation scheduling on the performance of a
data flow computer.” IEEE Transactions on Computers,
vol. 36, pp- 1019-1029, September 1087.

- ——

A-6

9. L.Jamieson, H. Siegel, E, Delp and
A. Whinston, “The mapping of parallel algorithms to

reconfigurable parallel architectures, "Proceedings of
Future' Directions in Computer Architecture and

Software, D. Agrawal Ed., ARO Contract
DAAG29-81-D—0100, PP. 147-154, May 1986.

10. J. Peterson, Petri—net Theory and the
Modeling of Systems, Englewood Cliffs, N.J.
Prentic—Hall, 1981.

11 T. Murata, "Circnit theoretic analysis and

synthesis of mar graphs,” [EEE Transactions on
Circuits and Systems, vol. 24, pp. 400—405, July 1977.

2. T. Murata, "Modelin and analysis of
concurrent systems,"Handbook of Software Engineering,
C. Vick and C. amoorthy Editors, pp. 39-63. Van
Nostrand Reinhold, 1984.

13. J. Stoughton and R. Mielke, "Pectri net model
lor concurrent processing of complex algorithms,"
Proccedings of the Government Microcircuit Applications
Conference, pp. 11-14, November 1936.

14. R. Mielke, J. Stoughton. and
“Modeling and performance bounds for concurrent
processing,” 8th International Conference on Distributed
Computing Systems, San Jose CA, June 13~17, 19s8.

13. J. Sifakis, "Performance evaluation of systems
using nets,” Net Theory and Applications, \V. Brauer
Editor, pp. 307-319, Springer-Verlag, 1979.

16. C. Ramamoorthy and G. Ho, “Performance
evaluation of asvnchronous concurrent systems using
Petri-nets " Transactions Software
Engincering, vol. 6, Pp. 440—149. September 1980,

17. T. Murata. "Synthesis of decision—free
concurrent systems for prescribed resources and
performance."” [EEE Transactions on Software
Enginecering, vol. 6, PP. 323-330, November 1950.

FUN #1 M
GRAPH e GLOB AL
MANAGER _1 Fun o2 MEMCRY '
.
L3
»
.f FUN on ;J

Figure 1. Representative ATAMM Architecture

Ae()

Figure 2. Algorithm Marked Graph ~ Example 1

> QE
OR PC

O
TR

—NMG EQGE (ABELS

IF Input Butter Fui
!

3 Input Buller Empty
DR Data Reag

PC Process Complete
PR Process Reagy

OE Output Butter Empty
OF Output Bulter Fuy

Figure 3. ATAMM Node Marked Graph Model

Fizure 4. Coniputational Marked Graph - Example !

ORIGINAL PAGE IS
OF POOR QUALITY

COMPUTING

ENVIRONMENTY

ALOORITHM
OIRECTED
GRAPH

Figure 6. Modified AMG — Example 1

ALOOMTHM
MARK €0

) SRAPH

nola‘:.vﬁsﬂ
O

COMPUTATIONAL
HARKED SRAPW

-~ Figure 5. ATAMM Model Components
Figure 7. Algorithm Marked Graph — Example 2 -

Figure 8. Computational Marked Graph — Example 2

A-8

1 23 ¢ s
—.—.
L
123 4 5
A
[
Anet———
1 23 ¢« s
<L
.-J—
Time

Figure 9. Graph Play With TBO=3 and Unlimited
Functional Uaits

Resovrsces
)
, -

b [

1
|

s

1 23 48 & 7

Time

Figure 10. Resource Utilization Envelope —

ple 2
1 2.3 ¢ S
A
o
1) L S
-t
<
- —= Time

Figure 11. Graph Play With TBO=4 W/O
Control Edges

0 12 3¢ 567 890N
1

llllll

At Time

211

"=

LR S 4 LA LI |
123485878 910N

Time

Figure 12. Rsoyrrge Envelope Overlay Diagram -
=3.0

1 23¢9 s 78 9101112131418
— TS .
—- Time
@ EEEE I PEE
@ t{r 1 3]2v
@ 111229,
l: 328
............. T Time

12232¢8% 78 9 01112131818

Figure 13. Resource Envelope Overlay Diagram —

40

.30

Throughput (Arbitrary Units)

.10

A-9

TBO=4.0
Fem= UT = — - - %D
2777
D99 9 7 %
3007 7
ARy
TV
29991 7
AVl
29999 7 1 7
mam
N
288533997
No. of Processors

Figure 14. Performance Margin — Example 2

ORIGINAL PAGE IS
OF POOR QUALITY

APPENDIX B

MODELING AND PERFORMANCE BOUNDS FOR CONCURRENT PROCESSING

Presented at

Conference on Distributed Computing Systems

International
San Jose, Califormia

June 1988

ORIGINAL. PAGE IS
OF POOR QUALITY

MODELING AND PERFORMANCE BOUNDS FOR CONCURRENT PROCESSING

Roland R. Miclke, John W' Stouglhton and Sukhamoy Som
Depariment of Electrical and Coniputer Engineering
Oid Dominion University
Norfoik, Virginia

ABSTRACT

The development of a new graph theoretic
model for describing the relation between a
decomposed algorithm and its execution in a
multiprocessor environment is presented. Called
ATAMM. the model consists of a set of Petri net
marked graphs which incorporates the general
specifications of a data flow architecture. The model
is useful for representing decision—free algorithms
having large—grained, ‘computationally complex
primitive operations. Performance measures of com—
puting speed and throughput capacity are defined.
The ATAMM model is used to develop analytically
lower bounds for these quantities.

1. INTRODUCTION

The development of a new graph theoretic model for
describing data and control flow associated with the
execution of large—grained algorithms in a special
distributed computing environment is presented. The
mode! is identified %y the acronym ATAMM which
represents Algorithm To Architecture Mapping Model.
The purpose of such a model is to provide a basis for
establishing rules for relating an algorithm to its execution
in a multiprocessor environment. Specifications derived
from the model lead directly to the description of a data
flow architecture. The availability of the ATAMM model
is important for at least three reasons. First, it provides a
context in which to investigate algorithm decomposition
stratcgies without the need to specify a specific computer
architecture. Second, the model identifies the data flow
and control dialog required of any data flow architecture
which implements the algorithm.” And third. the model

rovides a basis for calculating analytically performance
unds for computing speed and throughput capacity.

The problem domain of the ATAMM model consists
of decision free algorithms with computationally complex
primitive operations which are assumed to be implemented
in a dedicated data flow environment. The algorithms are
such as may be found in (but not limited to large scale
signal processing and control applications. The
anticipated multiprocessor environment is assumed to
consist of two to twenty processing elements for concurrent
execution of the various algorithm primitives.

The development of new computer architectures
based upon distributed, multiprocessor organizations (L.
(2] is motivated mainly by the requirement for increased
specd and greater throughput capability in complex sigual
processing applications (3], Recent advances in the
production o high—density’ microelectronies 11 has made

CH2541-1,88.0000/0538501.00 © 1983 IEEE

hRYY

possible the construction of parallel architectures
consisting of identical, special purpose computing elements
[5]. A number of models for describing the behavior of
algorithms in this setting have been geveloped (6]8].
However, these models represent only the data flow and do
not adequately display the complex issues of
communication and control flow which must occur in any
realization of the model. For this reason, it has been
difficult to investigate how to effectively match the
decomposition and scheduling of algorithms to the
structure and control of parallel architectures. The
importance of better understanding the relationship
between algorithms and architectures is only now
becoming recognized (9).

In Section Il of the paper, the modeling process to
describe algorithms in data flow architectures, A AMM, is
presented. The model consists of three Petri net marked
graphs called the algorithm marked graph (AMG), the
node marked graph (NMG), and the computational
marked graph (CMG). In Section IH, time performance
measures for concurrent processing are defined. The
ATAMM model is used as the basis for calculating
analytically lower bounds for these performance measures.
An example is presented to illustrate these concepts, and
the results of experimental runs on actual multiprocessor
hardware are reported.

II. ATAMM MQDEL DEVELOPMENT

In this section the ATAMM model to describe
concurrent processing of decomposed algorithms is
presented. The model consists of a set of Petri net marked
graphs which incorporate general specifications of
communication and processing associated with each
computational event in a data flow architecture. First. a
detailed description of the problem context is stated. This
is followed by the definition of the ATAMM model
consisting of the algorithm marked graph, the node
marked graph, and the computational marked graph.
Some familiarity with Petri nets {10] and marked graphs
f11] is assumed in this presentation.

The problems of interest are decision—free.
computationally complex problems as are often found in
signal processing and control applications. A problem
deseription normally results in the definition of a function
given hy the triple (N.Y.F). The set X represents the set
of admissible inputs, the set Y represents the set of
adimissible outputs, and F:X=>Y is the rule of corres—

pondence which unambiguously assigns exactly one
clement from Y to each clement of X. Associated with a
votputational problem s one or more algorithms. An

Alzonitiun s an exphicit mathematical statement., expressed
ar i erdered set of primitive operations, which esplains

how to implement the rule of correspondence F.oo o
general, a given problem can be decomposed by several
differont primitive operator sets. Also, for a given
primitive operator set. there are often different orderings
of primitive operations which can be specified to carry out
the problem. Of special interest are algorithm decomposi—
tions in which two or more primitive operations can be
performed concurrently. For such decompositions. the
potential exists for decreasing the computational time
required to'solve the problem by increasing the computa—
tional resources which implement the primitive operations.

The hardware environment for executing the
decomposed algorithms is assumed to consist of R identical
processors or functional units (FUNs) where R has a value
‘1 the range of two to twenty. This range of resources is
suggested for practical reasons due to the large—grained
aspect of the alogrithm decomposition and the need 0
maintain small communication times relative to process
times. Each FUN is a processor having local memory for
program storage and temporary input and output data
containers. ach FUN can execute any algorithm
primitive operation. The FUNs share a common global
memory (GLM) which may be either centralized or
distribut The coordination of FUNS in relaton to data
and control flow is directed by the graph manager (GRM).
The GRM also may be centralized or distributed. Output
created by the completion of a primitive operation is
placed into global memory only after the output data
containers have been emptied.)E‘hat is, outputs must be
consumed as inputs to successor primitive operations
before allowing new data to fill the output locations.
Assignment of a functional unit to a specific algorithm
primitive operation is made by the GRM only when all
inputs required by the operation are available in global
memory and a functional unit is available.

An algorithm marked graph is a marked graph which
represents a specific algorithm decomposition. Vertices of
the algorithm graph are in a one—to—one correspondence
with each occurrence of a primitive operation. The
algorithm graph contains an edge (i.}) directed from vertex
i to vertex j if the output of primitive operation i is an
input for primitive operation). Edge (i.j) is marked with a
token if an output from primitive operator i is available as
an input to primitive operator j. When constructing an
algorithm graph. vertices (primitive operations) are
displayed as circles, and edges (input—output signals) are
displayed as directed line segments connecting appropriate
vertices. The presence of a woken on an edge i3 indicated
by a solid dot placed on the edge. Source transitions and
sink transitions for input and output signals are
represented as squares. Sources for constants are not
usually included in the algorithm marked graph: however,
triangles are used for this purpose when necessary.

To illustrate the construction of an algorithmn
marked §raph, consider the problem of computing the
output of a discrete linear system given a sequence 0
inputs to the system. Let the system be described by the
state equation

x{k) = Ax(k-1) + Bu(k)
and output equation
y(k) = Cx{k),

where x is a p—vector, U is an m-—vector, and y is an

ORIGNAL FAGE 5
OF PCIR Q

UALITY

r—vector. lhe primitive operations are defined as matrix
multiplication and vector additon, and the natural
algorithim dacomposition resulting from the state equation
description is selected. The algorithm marked graph for
this decomposed algorithm is chown in Figure 1. The
initial marking indicates that initial condition data are
available.

E

et ! tiet] cel)

Axlk=1)

Ast)

Figure \. Algorithm marked graph for discrete system equalion.

The algorithm marked graph is a useful tool for
representing decomposed algorithms and for displaying
data flow within an algorithm. However, the algorithm
graph does not display procedures that a computing
structure must manifest in order to perform the computing
rask. In addition the issues of control, time performance,
and resource management are not apparent in this graph.
These important aspects of concurrent processing are
included in the ATAMM model through the definition of
two additional graphs. The node marked graph is defined
to model the execution of a- primitive operation. The
computational marked graph, obtained from the AMG and
the NMG by a set of construction rules. integrates both
the algorithm requirements and the computing
environment requiremcnts into a comprehensive graph
model. These additional marked graphs are defined in the
following.

A node marked graph is 3 Petri net representation of
the performance of a primitive operation by a functional
unit. Three primary activities. reading of input data from
global memory, processin of input data to compute
output data. and writing of output data to global memory,
are represented as transactions {vertices) in the NMG.
Data and control flow paths are represented as places
(edges), and the presence of signals is notated by tokens
marking appropriate edges. The conditions for firing the
process and write transitions of the NMG are as defined for
a general Petri net. while the read transition has one
additional condition for firing. In addition 10 having a
token present on each incoming signal edege. 3 functional
unit must be available for assignment 10 the primitive
operation before Lhe read node can fire. Once assigned, the
functional unit is used to implement the read. process, and
write operations before being returned to a queue of
available FUNs. The initial marking for an N MG consists
of a single token in the “process rcady" place. The NMG
model is shown in Figure 2.

B-3 5w

ORIGINAL PAGE IS
OF POOR QUALITY

IF Input Bufter Fuil

1E input Bufter Empty
DR Data Read

PC Process Complete
PR Process Ready

OE Output Bufter Empty
OF Output Bufter Fuli

Figure 2. ATAMM node marked graph model.

A computational marked graph;CMG) is constructed
from the AMG and the NMG by the following rules.

1. Source and sink nodes in the al orithm marked
gﬁg dre represented by source and sink nodes in the

2. Nodes corresponding to primitive operations in
tlﬁe gﬁo&ithm marked graph are represented by NMGs in
the .

3. Edges in the algorithm marked graph are
represented by edge pairs, one forward direct.egr for data
flow and one backward directed for control flow, in the
CMG. The initial marking for the edge pair consists of a
single token in the forward—directed place if data are
available, or a single token in the backward—directed place
if data are not available.

The play of the CMG proceeds according to the

following graph rules.

elJ A node is enabled when all incoming edges are
marked with a token. An enabled node fires by
encumbering one token from each incoming edge, delaying
for some specified transition time, and then depositing one
token on each outgoing edge.

2) A source node and a sink node fire when enabled
without regard for the availability of a FUN.

3) A primitive operation is initiated when the read
node of an NMG is enabled and a FUN is available for
assignment to the NMG. A FUN remains assigned to an
N NMuatil completion of the firing of the write node of
the .

In order to illustrate the construction of a
computational marked graph, the CMG corresponding to
the algorithm marked graph of Figure ! is shown in
Figure3. The computational marked graph is useful
because it clearly displays the data and control flow which
must occur in any hardware implementaion of the model
process, and because it provides a hardware independent
context in which to evaluate process performance.

oy thiedy ety

M).Aﬂ.mlm-nmwmlu“unmw

‘The complete ATAMM model consists of the
algomhm‘ marked wh, the node marked raph, and the
computational mar graph. A pictoral 3isplay of this
model is shown in Figure 4. In the next section, time
performance characteristics of the ATAMM model are
investigated.

ALOOM T
oingcren
SRAPK

ALGOMNITHN
MARKED

ORAPY

Flgure (. ATAMM medei compeonenis.

1. PERFORMANCE BOUNDS

The importance of the ATAMM model is that it
establishes a context in which to investigate the
performance of decomposed algorithms in multiprocessor
data flow architectures. In this section, performance
measures indicating computing speed and throughput
Capacity are defined. Bounds for these quantities are
calculated analytically from the al% rithm marked graph
and the computational marked graph. This information is

AU BRI D o] > g ¢

it i 4 NI P

CRIGH . iz)
OF POOR ™

essential for efficiently matching algorithm decompositions
with architecture implementations. The work presented in
this section is an interesting application and extension of
recent investigations of the performance of Petri nets (12},
{13] and marked graphs [14].

It is assumed that a decomposed algorithm is
implemented in a multiprocessor architecture containing R
computing resources or functional units. Each functional
unit is capable of performing any of the primitive
operations whose sequence defines the decomposition. A
computational task is initiated when an input data token
from the source node is encumbered. Task output occurs
when a correspondin out.xut data token is deposited at
the output sink node task is completed when all
computing associated with the task is completed. It
should be noted that task output and task completion do
not always coincide. In many iterative signal processing
algorithms, computing to generate initial conditions for the
next iteration often occurs after an output has been
calculated. Task completion is usually indicated in the
AMG or the CMG by the return of the graph to some
steady—state initial marking. To facilitate measurement of
thro;fhput capacity, it is assumed that tasks are repeated
periodically with new jnput data sets. New data sets are
available continuously as ioput tokens from the input
source node. Included in this problem class are iterative
algorithms where the present task requires as inputs data
from previous task calculations.

Concurrency in this problem setting occurs in two
ways. First, different functional units may perform
simultaneously several primitive operations belonging to &
single task. This type of concurrency is referred to as
vertical concurrency. Vertical concurrency has a direct
effect on task computing speed. It is limited by the
number of primitive operations that can be performed
simultaneously in a given algorithm decomposition, and by
the number of functional units available to perform the
primitive operations. Second, different functional units
may perform simultaneously primitive operations
belonging to different tasks sequentially input to the
computing 8ystem. Called horizontal concurrency, this
type of concurrency has a direct effect on throughput
capacity. It is limited by the capacit
accommodate additional task inputs, an by the number of
functional units available to implement the tasks. In the
following it is shown that the process of algorithm
decomposition imposes bounds on the amount of vertical
ooncurrenc{ and horizontal concurrency possible in a given

{ sufficient computing resources are available,
i . If the pumber

are possible.

Three performance measures for concurrent
processing are defined. The first two parameters, TBIO
and TT, are indicators of computing speed and thus reflect
the degree of vertical concurrency. The third parameter,
TBO, is a measure of throughput capacity and thus
reflects the degree of horizontal concurrency.

The performance measure TBIO is
the computing time which elapses between a task input
and the corresponding task output.

541

efinition & The performance measure TT is the
computing time which elapses between a task input and
the completion of all computation associated with that
task.

. The performance measure TBO is the
computing time which elapses between successive task
outputs when the graph is operating periodically in

steady—state.

The remainder of this section is devoted to developing
lower bounds for these performance measures.

Let G denote an algorithm marked graph
representing 2 decomposed algorithm. The lower bound
for TBIO is the shortest time required for a data token
from the data input source Lo propagate through the graph
to the data output sink. Similarly, the lower bound tor
TT is the shortest time required to complete all computing
activity initiated by the injection of a data token from the
data input source. These shortest times are the actual
performance times when only a single task is active in the
graph during any time interval (no horizontal
concurrency), and as many computing resources as are
required are available (maximum vertical concurrency).
Under these operating conditions, lower bounds for-TBIO
and TT are calculated by identifying certain longest paths
in a graph obtained from the algorithm marked graph.
This new graph, cailed the modified algorithm graph GM‘

is defined and then used to determine lower bounds for
TBIO and TT.

Let p, be a place
of G, directed from transition t o transition t, which

contains a token of the initial marking. The modified
algorithm graph GM is obtained from the graph G by the

following construction rules.

1. Place p; is deleted from G.

2. A new place p;y, directed from the data input
source to transition tg, is added to G.

3. A new output sink s, different from all other
output sinks, and a new place Dio, directed from
transition t 0 8, are added to G.

4. The above rules are repeated for each place of G
containing a token of the initial marking.

Lower bounds for TBIO and TT are presented in
Theorem | and Theorem 2 respectively.

Let Pi be the ith
directed path in Gy from the data input source to the
data output sink, and let T(P-l) denote the sum of
transition times for transitions contained in Pi' Then,

TBIOy g = Max { T(P) }

where the maximum is taken over all paths Pi in graph
GM'

Proof. Without loss of generality, let tp be the last
transition in all paths Pi directed from the data input
source to the data output sink. Transition Y is enabled
when each input place for t; contains a token. Since hy
assumption a computing resource is available, t fires as
soon as it becomes enabled. Let p he the last input place
for ty to acquire a token, and let t_ be the input transition
for place Py Continuing this labeling procedure results in

a backward path construction process. This process is
repeated, first at t_, and then at each succeeding transition

until the data input source is reached, identifying a path
P.. By the construction process for the path, it is clear

that T(P.) = Max { T(P;) }, where the maximum is over
all paths Pi in GM‘ It is also clear that TB!OLB can he
no shorter than T(P.) so that TBIOLB > T(Pj). Since a
computing resource is available when each transition in Pj

is enabled, the time between input and corresponding
output can be no longer than T(P,) so that

TBIOLBST(P.). Therefore, TBIOLB = T(Pj) = Max
{ T(P;) }, where the maximum is over all paths P, in Gy,.
This completes the proof.

Theorem 2: Lower Bound for TT. Let P, be the ith

directed path in G\l from the data input source to any
output sink, and let T(Pi) denote the sum of transition
times of transitions contained in Pi‘ Then,

TT g = Max { T(P,) }

where the maximum is taken over all paths P, in graph
Gy

Proof. By the construction rules for graph G\[. a task is

initiated when input data tokens are input from the data
input source. and is completed when all output sinks have
accepted tokens. Therefore, TT is the time which elapses
from injection of input tokens to the arrival of a token at
the last fired output sink. Let T(PL) = .\la.x{T(Pi)}‘ l’-l in

GM‘ be the longest path time of paths from the data input
source 3; to any output sink, say §,- Since a token must
reach sink o before a task is completed, it follows that
TTLB > T(P‘). Since a resource is available for each
transition to fire when cnabled. and since Pt is the longest
path in G.\I' it also follows that '[‘TLBST(P(). Therefore,
TTLB = T(P() = NI&X(T(Pi)}. where the maximum is
over all paths Pi in G.\l‘ This completes the proof.

43B-6

To illustrate the afplicav.ion of Theorem 1| and
Theorem 2, 'I‘BIOLB an TTLB are computed for the

algorithm graph shown in Figure 1. For this example, the
following transition times are assumed: T = 4,
T(2»=1, T(3) = 5 and T(4) = 6. The modified
algorithm graph corresponding 1o Figure 1 is shown in
Figure 5. The modified algorithm graph contains two
paths directed from the data input source 8y to the data

output sink 5. Path P, consists of edge set {1, 2, 3, 4}
with T(Pl) = 10. and path P.z consists of edge set {5—1. 3,
4} with ’I‘(P2) = 6. Therelore, since T(Pl) > T(Pz). path
P, determines the lower bound for TBIO and TBIOLB =

10. The modified algorithm graph contains two additional
directed paths from the data input source $j to the output

sink s.. Path P4 consists of edge set {1, 2, 6, 5-2} with
T(Ps) = 11, and path P consists of edge set {5-1, 6, 52}
with T(P4) = 7. Since T(P3)>T(Pl)>T(P4)>T(P2),
path P3 determines the lower bound for TT and
TTLB=“‘

] 1 2) 3
ls. 1 2) S0

§=1

Figure 5. Modified algorithm graph tor Figure 1.

Next a lower bound for the performance measure
TBO is presented. Let G be a computational marked
eraph representing a decomposed algorithm. It is assumed
that operating conditions for G are set to maximize
horizontal concurrency. That is, data tokens are.
continuously available at the data input source. and as
many computing resources as needed can be called to
perform primitive operations. With these conditions, the
graph plays periodically in steadv-state, and TBOLB is

the shortest time possible between successive outputs.

100 3 w . Let G be a
computational marked graph and let Cfi be the ith directed
citeuit in G, The notation T(Ci) denotes the sum of
transition times of transitions contained in Ci‘ and .\I(Ci)
denotes the number of tokens contained in Ci' Then,

TBO| g = Max { T(C;) / M(C,) },

where the maxinum is taken over all directed circuits in

G

Proof. Without loss of generality, let ty be the outpnt
transdion in G so that an output is produced cach time L

<RIGINAL PAGE IS
OF POOR QUALITY

+
1
i
L1

completes ﬁriné. Then THOLB is the minunum firing
period of transition tg. It is shown in {151 (pp. 3¥=601 that

the minimum firing period of cach transition of 4 marked
graph is given by l\lu{T(Ci)/.\l((‘i)), where the

maximum is taken over all directed circuits (‘i in G.
Therefore. the theorem follows.

The computational marked graph shown in Figure 3
is used to illustrate Theorem 3. This CMG contains many
directed circuits. However. the directed circuit which
contains all NMG nodes of transitions 2 and 1 coutains
only one token and maximizes the ratio 'l‘(Ci) /M)

Therefore, the shortest time possible between syccessive
outputs in this graph is TBO; g = 7.

The optimum time perforinance for this example
algorithm_is described by the following characteristics.
The algorithm accepts an input and issues an output every
7 time units. Each input requires a total of 11 time units
of processing. and an output is issued 10 time units after
the input is accepted. It can be shown by simulation that
3 functional units are required Lo achieve this performance.
The addition of more functional units will not improve the
computing speed or throughput rate for this algorithm
decomposition.

IV. CONCLUSION

A new model useful for understanding the
relationship between decomposed algorithms and data flow
architectures has been presented. Named ATAMM for
Algorithm To Architecture Mapping Model, the model
consists of Petri net marked graphs called the algorithm
marked graph, the node marked graph, and the
computational marked graph. Time performance measures
of time between input and output (TBIO), task time
(TT), and time between outputs (TBO) were defined.
Then lower bounds for the performance measures wcre
calculated analytically from the modified algorithm graph
and the computational marked graph. An example to
illustrate these concepts was presented.

Simulation tools and an actual hardware prototype

have been developed to test and validate the ATAMM
model. The simulation software package [16] consists of a
PC-based computer model of the CM%. Algorithms are
entered to the package by specifying the algorithm marked
raph, and simulation output consists of a graphical
isplay of the movement of tokens. An accompanying
diagnostic software package [17] automatically computes
and displays performance measures and other performance
data. A hardware prototype [18] has also been constructed
to validate the ATAMM operating rules and to provide a
benchmark for testing the simulation software. The
architecture is shown in Figure 6 and is one of several
candidates which could be used to perform concurrent
operations according to the ATAMM rules. A primary
motivation for this particular desiFn was the availability of
hardware. The system consists of S—100 crates having an
Intel 8088 CPU card, multiple serial 1/O channels. and
32K memory. An IBM/XT is used to host the systeimn and
to down load algorithin graph descriptions to the system.
A number of decomposed algorithims, including those
presented here, have been investigated using these tools.

DRIy ™!

LR it
PR XS TRER

OF FuOr QUATY

B-7
543

oM
PC/XT

3

GRAPH
MANAGER

RS =232
9600 BAUD

1 1

FUN ¢t

~

GLOBAL
MEM,

FUN®2 FUN®)

Figurs & Protetype hardwere contiguretion ltor

ATAMM velidation.

Continuing research is designed to generalize the
ATAMM model and is focused in three main areas. The
present model assumes that all functional units are
identical and that each is able to perform all primitive
operations. An important extension is to model the
situation where there are two or more different groupings
of processors where each group is able to perforin only a
subset of the required primitive operations. The present
model represents only decision—{ree algorithms. Another
important extension 18 to develop the capability to admit
algorithms containing data—dependent branching points.
Finally, methods for achieving optimum time performance
are being studied in the context of the ATAMM model.

ACKNOWLEDGEMENT

__ The work reported here was supported in part by the
NASA Langley Research Center under Grant NAG-1-683.

REFERENCES

(1] P. Treleaven, D. Brownbridge and R. Hopkins,
"Data—driven and demand—driven computer architecture.”
Computing Surveys, Vol. 14, pp. 93 — 143, March 1952.

[2] V. Srini, "An architectural comparison of
dataflow systems," Computer, pp. 68 — 88, March 1436.

(3] W. Rheinbolt, "Report of the panel on future
directions in computational mathematics, algorithms, and
scientific software," sponsored by NSF Grant
DMS—35-3433, SIAM, 1985.

[4] T. Longo, G. Herzog and D. Maxwell, "A fast
single chip 1750A CPU and compatible support
components in VHSIC-size CMOS technology.”
Proceedings of the Goverminent Microcircuit Applications
Conference, pp. 317 — 320, 1986.

ORIGINAY. pany
OF PGOR QuiaLyy

(5] W.Wehner, W.Everhart, S. Shankar and
K. Stalsberg, "A VSHIC architecture for highly parallel
image understanding," Proceedings of the Government
Microcircuit Applications Conference, pp. 117 - 120,
November 1986.

[6] M. Sowa and T. Murata, "A data flow computer
architecture with program and token memories," [EEE
Transactions on Computers, Vol. 31, pp.820 - 824,
September 1982.

e57] K. Kavi, B. Buckles and U. Narayan Bhat, "A
formal definition of data flow graph models," [EEE
Transactions on Computers, Vol. 35, pp. 940 — 948,
Novemnber 1986.

[8} M. Granski, . Koren and G. Silberman, "The
effect of operation scheduling on the performance of a data
flow computer," IEEE Transactions on Computers, Vol.
36, pp. 1019 - 1029, September 1987.

[9] L. Jamieson, H. Siegel, E. Delp and A. Whinston,
"The mapping of parallel algorithms to reconfigurable
parallel architectures,” Proceedings of Future Directions in
Computer Architecture and Software, D. Agrawal Ed.,
ARO Contract DAAG29-81-D~0100, pp. 147 — 154 May
1986.

[10] J. Peterson, Petri Net Theory and the Modeling
of Systems, Englewood Cliffs, N.J.: Prentice—Hall, 1981.

(11} T. Murata, "Circuit theoretic analysis and
gnthais of marked graphs," IEEE Transactions on
ircuits and Systems, Vol. 24, pp. 400 — 405, July 1977.

(12] J. Sifakis, "Performance evaluation of systems
using nets,” Net Theory and Applications, W. Brauer
Editor, pp. 307 - 319, Springer—Verlag, 1979.

(13] C. Ramamoorthy and G. Ho, "Performance
evaluation of asynchronous concurrent systems using Petri
nets," [EEE Transactions on Software Engineering, Vol. 6,
Pp- 440 — 449, September 1980.

(14] T. Murata, “Synthesis of decision~free
concurrent systems for prescribed resources and
performance," IEEE Transactions on Software
Engineering, Vol. 6, pp. 525 — 530, November 1980.

[15] T. Murata, "Modeling and analysis of concurrent

systems," Handbook of Software Engineerin", C. Vick and

. Ramamoorthy, Editors, pp. 39 — 63, Van Nostrand
Reinhold, 1984.

{16] K. Jackson, R. Tymchyshyn, R. Mielke and
J. Stoughton, "Simulation~ software for concurrent
processing," Proceedings of the IEEE Southeastcon
Conference, pp. 82 — 86, April 1987.

[17] R. Obando, “Simulation software for

g‘erformance evaluation of concurrent processing," Master's

hesis, Old Dominion University, Norfolk, Virginia,
October 1987.

(18] J. Stoughton and R. Mielke, "Petri net model for
concurrent processing of complex algorithms," Proceedings
of the Government Microcircuit Applications Conference,
pp. 11 — 14. November 1986.

